Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem of determining the number of bacteria present at various times, we need to use the given growth function:
[tex]\[ f(t) = 500 \cdot e^{0.1t} \][/tex]
where [tex]\( f(t) \)[/tex] is the number of bacteria in millions, and [tex]\( t \)[/tex] is the time in days. Let's evaluate this function at three specific points: 3 days, 4 days, and 1 week (7 days).
### Step-by-Step Solution
#### (a) Number of bacteria present at 3 days
1. Substitute [tex]\( t = 3 \)[/tex] into the function:
[tex]\[ f(3) = 500 \cdot e^{0.1 \cdot 3} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 3 = 0.3 \][/tex]
3. Compute the value:
[tex]\[ e^{0.3} \approx 1.34986 \][/tex] (using a calculator or exponential table)
4. Multiply by 500:
[tex]\[ f(3) = 500 \cdot 1.34986 \approx 674.929 \][/tex]
So, the number of bacteria present at 3 days is approximately 674.929 million.
5. Round to the nearest integer:
[tex]\[ 674.929 \approx 675 \][/tex]
Therefore, approximately 675 million bacteria are present in 3 days.
#### (b) Number of bacteria present at 4 days
1. Substitute [tex]\( t = 4 \)[/tex] into the function:
[tex]\[ f(4) = 500 \cdot e^{0.1 \cdot 4} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 4 = 0.4 \][/tex]
3. Compute the value:
[tex]\[ e^{0.4} \approx 1.49182 \][/tex]
4. Multiply by 500:
[tex]\[ f(4) = 500 \cdot 1.49182 \approx 745.912 \][/tex]
So, the number of bacteria present at 4 days is approximately 745.912 million.
5. Round to the nearest integer:
[tex]\[ 745.912 \approx 746 \][/tex]
Therefore, approximately 746 million bacteria are present in 4 days.
#### (c) Number of bacteria present at 1 week (7 days)
1. Substitute [tex]\( t = 7 \)[/tex] into the function:
[tex]\[ f(7) = 500 \cdot e^{0.1 \cdot 7} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 7 = 0.7 \][/tex]
3. Compute the value:
[tex]\[ e^{0.7} \approx 2.01375 \][/tex]
4. Multiply by 500:
[tex]\[ f(7) = 500 \cdot 2.01375 \approx 1006.876 \][/tex]
So, the number of bacteria present at 7 days is approximately 1006.876 million.
5. Round to the nearest integer:
[tex]\[ 1006.876 \approx 1007 \][/tex]
Therefore, approximately 1007 million bacteria are present in 1 week.
### Conclusion
- (a) Approximately 675 million bacteria are present in 3 days.
- (b) Approximately 746 million bacteria are present in 4 days.
- (c) Approximately 1007 million bacteria are present in 1 week.
[tex]\[ f(t) = 500 \cdot e^{0.1t} \][/tex]
where [tex]\( f(t) \)[/tex] is the number of bacteria in millions, and [tex]\( t \)[/tex] is the time in days. Let's evaluate this function at three specific points: 3 days, 4 days, and 1 week (7 days).
### Step-by-Step Solution
#### (a) Number of bacteria present at 3 days
1. Substitute [tex]\( t = 3 \)[/tex] into the function:
[tex]\[ f(3) = 500 \cdot e^{0.1 \cdot 3} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 3 = 0.3 \][/tex]
3. Compute the value:
[tex]\[ e^{0.3} \approx 1.34986 \][/tex] (using a calculator or exponential table)
4. Multiply by 500:
[tex]\[ f(3) = 500 \cdot 1.34986 \approx 674.929 \][/tex]
So, the number of bacteria present at 3 days is approximately 674.929 million.
5. Round to the nearest integer:
[tex]\[ 674.929 \approx 675 \][/tex]
Therefore, approximately 675 million bacteria are present in 3 days.
#### (b) Number of bacteria present at 4 days
1. Substitute [tex]\( t = 4 \)[/tex] into the function:
[tex]\[ f(4) = 500 \cdot e^{0.1 \cdot 4} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 4 = 0.4 \][/tex]
3. Compute the value:
[tex]\[ e^{0.4} \approx 1.49182 \][/tex]
4. Multiply by 500:
[tex]\[ f(4) = 500 \cdot 1.49182 \approx 745.912 \][/tex]
So, the number of bacteria present at 4 days is approximately 745.912 million.
5. Round to the nearest integer:
[tex]\[ 745.912 \approx 746 \][/tex]
Therefore, approximately 746 million bacteria are present in 4 days.
#### (c) Number of bacteria present at 1 week (7 days)
1. Substitute [tex]\( t = 7 \)[/tex] into the function:
[tex]\[ f(7) = 500 \cdot e^{0.1 \cdot 7} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 7 = 0.7 \][/tex]
3. Compute the value:
[tex]\[ e^{0.7} \approx 2.01375 \][/tex]
4. Multiply by 500:
[tex]\[ f(7) = 500 \cdot 2.01375 \approx 1006.876 \][/tex]
So, the number of bacteria present at 7 days is approximately 1006.876 million.
5. Round to the nearest integer:
[tex]\[ 1006.876 \approx 1007 \][/tex]
Therefore, approximately 1007 million bacteria are present in 1 week.
### Conclusion
- (a) Approximately 675 million bacteria are present in 3 days.
- (b) Approximately 746 million bacteria are present in 4 days.
- (c) Approximately 1007 million bacteria are present in 1 week.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.