Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem of determining the number of bacteria present at various times, we need to use the given growth function:
[tex]\[ f(t) = 500 \cdot e^{0.1t} \][/tex]
where [tex]\( f(t) \)[/tex] is the number of bacteria in millions, and [tex]\( t \)[/tex] is the time in days. Let's evaluate this function at three specific points: 3 days, 4 days, and 1 week (7 days).
### Step-by-Step Solution
#### (a) Number of bacteria present at 3 days
1. Substitute [tex]\( t = 3 \)[/tex] into the function:
[tex]\[ f(3) = 500 \cdot e^{0.1 \cdot 3} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 3 = 0.3 \][/tex]
3. Compute the value:
[tex]\[ e^{0.3} \approx 1.34986 \][/tex] (using a calculator or exponential table)
4. Multiply by 500:
[tex]\[ f(3) = 500 \cdot 1.34986 \approx 674.929 \][/tex]
So, the number of bacteria present at 3 days is approximately 674.929 million.
5. Round to the nearest integer:
[tex]\[ 674.929 \approx 675 \][/tex]
Therefore, approximately 675 million bacteria are present in 3 days.
#### (b) Number of bacteria present at 4 days
1. Substitute [tex]\( t = 4 \)[/tex] into the function:
[tex]\[ f(4) = 500 \cdot e^{0.1 \cdot 4} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 4 = 0.4 \][/tex]
3. Compute the value:
[tex]\[ e^{0.4} \approx 1.49182 \][/tex]
4. Multiply by 500:
[tex]\[ f(4) = 500 \cdot 1.49182 \approx 745.912 \][/tex]
So, the number of bacteria present at 4 days is approximately 745.912 million.
5. Round to the nearest integer:
[tex]\[ 745.912 \approx 746 \][/tex]
Therefore, approximately 746 million bacteria are present in 4 days.
#### (c) Number of bacteria present at 1 week (7 days)
1. Substitute [tex]\( t = 7 \)[/tex] into the function:
[tex]\[ f(7) = 500 \cdot e^{0.1 \cdot 7} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 7 = 0.7 \][/tex]
3. Compute the value:
[tex]\[ e^{0.7} \approx 2.01375 \][/tex]
4. Multiply by 500:
[tex]\[ f(7) = 500 \cdot 2.01375 \approx 1006.876 \][/tex]
So, the number of bacteria present at 7 days is approximately 1006.876 million.
5. Round to the nearest integer:
[tex]\[ 1006.876 \approx 1007 \][/tex]
Therefore, approximately 1007 million bacteria are present in 1 week.
### Conclusion
- (a) Approximately 675 million bacteria are present in 3 days.
- (b) Approximately 746 million bacteria are present in 4 days.
- (c) Approximately 1007 million bacteria are present in 1 week.
[tex]\[ f(t) = 500 \cdot e^{0.1t} \][/tex]
where [tex]\( f(t) \)[/tex] is the number of bacteria in millions, and [tex]\( t \)[/tex] is the time in days. Let's evaluate this function at three specific points: 3 days, 4 days, and 1 week (7 days).
### Step-by-Step Solution
#### (a) Number of bacteria present at 3 days
1. Substitute [tex]\( t = 3 \)[/tex] into the function:
[tex]\[ f(3) = 500 \cdot e^{0.1 \cdot 3} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 3 = 0.3 \][/tex]
3. Compute the value:
[tex]\[ e^{0.3} \approx 1.34986 \][/tex] (using a calculator or exponential table)
4. Multiply by 500:
[tex]\[ f(3) = 500 \cdot 1.34986 \approx 674.929 \][/tex]
So, the number of bacteria present at 3 days is approximately 674.929 million.
5. Round to the nearest integer:
[tex]\[ 674.929 \approx 675 \][/tex]
Therefore, approximately 675 million bacteria are present in 3 days.
#### (b) Number of bacteria present at 4 days
1. Substitute [tex]\( t = 4 \)[/tex] into the function:
[tex]\[ f(4) = 500 \cdot e^{0.1 \cdot 4} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 4 = 0.4 \][/tex]
3. Compute the value:
[tex]\[ e^{0.4} \approx 1.49182 \][/tex]
4. Multiply by 500:
[tex]\[ f(4) = 500 \cdot 1.49182 \approx 745.912 \][/tex]
So, the number of bacteria present at 4 days is approximately 745.912 million.
5. Round to the nearest integer:
[tex]\[ 745.912 \approx 746 \][/tex]
Therefore, approximately 746 million bacteria are present in 4 days.
#### (c) Number of bacteria present at 1 week (7 days)
1. Substitute [tex]\( t = 7 \)[/tex] into the function:
[tex]\[ f(7) = 500 \cdot e^{0.1 \cdot 7} \][/tex]
2. Calculate the exponent:
[tex]\[ 0.1 \cdot 7 = 0.7 \][/tex]
3. Compute the value:
[tex]\[ e^{0.7} \approx 2.01375 \][/tex]
4. Multiply by 500:
[tex]\[ f(7) = 500 \cdot 2.01375 \approx 1006.876 \][/tex]
So, the number of bacteria present at 7 days is approximately 1006.876 million.
5. Round to the nearest integer:
[tex]\[ 1006.876 \approx 1007 \][/tex]
Therefore, approximately 1007 million bacteria are present in 1 week.
### Conclusion
- (a) Approximately 675 million bacteria are present in 3 days.
- (b) Approximately 746 million bacteria are present in 4 days.
- (c) Approximately 1007 million bacteria are present in 1 week.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.