At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the time it takes for a ball thrown vertically upward with an initial speed of 20 m/s to return to the thrower's hand, we need to understand the motion of the ball in the context of the physics of free fall under gravity.
### Step-by-Step Solution:
1. Initial Information and Assumptions:
- Initial speed of the ball, [tex]\( u = 20 \, \text{m/s} \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex] (standard gravity).
- When the ball returns to the thrower's hand, its displacement, [tex]\( s = 0 \)[/tex].
2. Time to Reach the Maximum Height:
- When the ball reaches its maximum height, its final velocity, [tex]\( v \)[/tex], is 0 m/s.
- The time to reach the maximum height, [tex]\( t_{\text{up}} \)[/tex], can be calculated using the formula for uniformly accelerated motion:
[tex]\[ v = u - g \cdot t_{\text{up}} \][/tex]
- Setting [tex]\( v = 0 \)[/tex] and solving for [tex]\( t_{\text{up}} \)[/tex]:
[tex]\[ 0 = 20 - 9.8 \cdot t_{\text{up}} \][/tex]
[tex]\[ 9.8 \cdot t_{\text{up}} = 20 \][/tex]
[tex]\[ t_{\text{up}} = \frac{20}{9.8} \approx 2.0408163265306123 \, \text{seconds} \][/tex]
3. Total Time for the Ball to Return to the Thrower:
- The total time for the ball to go up and come back down is twice the time taken to reach the maximum height:
[tex]\[ t_{\text{total}} = 2 \cdot t_{\text{up}} \][/tex]
[tex]\[ t_{\text{total}} = 2 \cdot 2.0408163265306123 \approx 4.081632653061225 \, \text{seconds} \][/tex]
Thus, the time taken for the ball to return to the thrower's hand is approximately 4.08 seconds.
### Step-by-Step Solution:
1. Initial Information and Assumptions:
- Initial speed of the ball, [tex]\( u = 20 \, \text{m/s} \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex] (standard gravity).
- When the ball returns to the thrower's hand, its displacement, [tex]\( s = 0 \)[/tex].
2. Time to Reach the Maximum Height:
- When the ball reaches its maximum height, its final velocity, [tex]\( v \)[/tex], is 0 m/s.
- The time to reach the maximum height, [tex]\( t_{\text{up}} \)[/tex], can be calculated using the formula for uniformly accelerated motion:
[tex]\[ v = u - g \cdot t_{\text{up}} \][/tex]
- Setting [tex]\( v = 0 \)[/tex] and solving for [tex]\( t_{\text{up}} \)[/tex]:
[tex]\[ 0 = 20 - 9.8 \cdot t_{\text{up}} \][/tex]
[tex]\[ 9.8 \cdot t_{\text{up}} = 20 \][/tex]
[tex]\[ t_{\text{up}} = \frac{20}{9.8} \approx 2.0408163265306123 \, \text{seconds} \][/tex]
3. Total Time for the Ball to Return to the Thrower:
- The total time for the ball to go up and come back down is twice the time taken to reach the maximum height:
[tex]\[ t_{\text{total}} = 2 \cdot t_{\text{up}} \][/tex]
[tex]\[ t_{\text{total}} = 2 \cdot 2.0408163265306123 \approx 4.081632653061225 \, \text{seconds} \][/tex]
Thus, the time taken for the ball to return to the thrower's hand is approximately 4.08 seconds.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.