Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the number of elements in the union of two sets [tex]\( U \)[/tex] and [tex]\( A \)[/tex], we start by understanding the sets individually.
1. Set [tex]\( U \)[/tex]: This set includes all positive integers less than 20. So, [tex]\[ U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19\} \][/tex]
2. Set [tex]\( A \)[/tex]: This set consists of all multiples of 4 within the same range. Therefore, [tex]\[ A = \{4, 8, 12, 16\} \][/tex]
Next, we proceed to find the union of these two sets, which includes all distinct elements from both sets combined.
[tex]\[ U \cup A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19\} \][/tex]
Notice that elements in [tex]\( A \)[/tex] are already included in the complete list of [tex]\( U \)[/tex]. Thus, the union does not add any new elements beyond those already in [tex]\( U \)[/tex].
Finally, count the number of distinct elements in the union set [tex]\( U \cup A \)[/tex]:
[tex]\[ n(U \cup A) = 19 \][/tex]
Therefore, the number of elements in the union of [tex]\( U \)[/tex] and [tex]\( A \)[/tex] is given by:
[tex]\[ \boxed{19} \][/tex]
1. Set [tex]\( U \)[/tex]: This set includes all positive integers less than 20. So, [tex]\[ U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19\} \][/tex]
2. Set [tex]\( A \)[/tex]: This set consists of all multiples of 4 within the same range. Therefore, [tex]\[ A = \{4, 8, 12, 16\} \][/tex]
Next, we proceed to find the union of these two sets, which includes all distinct elements from both sets combined.
[tex]\[ U \cup A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19\} \][/tex]
Notice that elements in [tex]\( A \)[/tex] are already included in the complete list of [tex]\( U \)[/tex]. Thus, the union does not add any new elements beyond those already in [tex]\( U \)[/tex].
Finally, count the number of distinct elements in the union set [tex]\( U \cup A \)[/tex]:
[tex]\[ n(U \cup A) = 19 \][/tex]
Therefore, the number of elements in the union of [tex]\( U \)[/tex] and [tex]\( A \)[/tex] is given by:
[tex]\[ \boxed{19} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.