Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To understand the difference between the graphs of [tex]\( f(x) = x^2 + 4 \)[/tex] and [tex]\( g(y) = y^2 + 4 \)[/tex], we need to interpret the transformations that can be applied to these functions.
1. Graph of [tex]\( f(x) = x^2 + 4 \)[/tex]:
- This is a parabolic function.
- The vertex of this parabola is at the point (0, 4).
- The parabola opens upwards since the coefficient of [tex]\( x^2 \)[/tex] is positive.
2. Graph of [tex]\( g(y) = y^2 + 4 \)[/tex]:
- On the surface, it appears to be similarly structured to [tex]\( f(x) = x^2 + 4 \)[/tex], but written in terms of [tex]\( y \)[/tex] instead of [tex]\( x \)[/tex].
- When we set [tex]\( y = f(x) \)[/tex], we get [tex]\( y = x^2 + 4 \)[/tex].
- Reflecting [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex] means swapping the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Now let's determine which transformation appropriately describes [tex]\( g(y) \)[/tex]:
- Option A: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex].
- Reflecting over [tex]\( y = x \)[/tex] swaps [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- This corresponds exactly to how we've defined [tex]\( f(x) = x^2 + 4 \)[/tex] and [tex]\( g(y) = y^2 + 4 \)[/tex].
- Option B: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the [tex]\( y \)[/tex]-axis.
- Reflecting over the [tex]\( y \)[/tex]-axis changes [tex]\( x \)[/tex] to [tex]\(-x\)[/tex].
- [tex]\( f(x) \)[/tex] would then become [tex]\( f(-x) \)[/tex], or [tex]\((-x)^2 + 4 = x^2 + 4 \)[/tex], which is still [tex]\( f(x) \)[/tex], so this doesn't describe a change to [tex]\( g(y) \)[/tex].
- Option C: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the [tex]\( x \)[/tex]-axis.
- Reflecting over the [tex]\( x \)[/tex]-axis changes [tex]\( y \)[/tex] to [tex]\(-y\)[/tex].
- Thus, [tex]\( g(y) \)[/tex] becomes [tex]\( -f(x) \)[/tex], or [tex]\(-(x^2 + 4) = -x^2 - 4 \)[/tex], which doesn't match the form of [tex]\( g(y) \)[/tex].
- Option D: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = 1 \)[/tex].
- Reflecting over [tex]\( y = 1 \)[/tex] would translate the function up or down relative to [tex]\( y = 1 \)[/tex].
- This does not produce a simple [tex]\( y^2 + 4 \)[/tex] transformation.
Combining these interpretations, the correct difference between [tex]\( f(x) \)[/tex] and [tex]\( g(y) \)[/tex] is:
Option A: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex].
1. Graph of [tex]\( f(x) = x^2 + 4 \)[/tex]:
- This is a parabolic function.
- The vertex of this parabola is at the point (0, 4).
- The parabola opens upwards since the coefficient of [tex]\( x^2 \)[/tex] is positive.
2. Graph of [tex]\( g(y) = y^2 + 4 \)[/tex]:
- On the surface, it appears to be similarly structured to [tex]\( f(x) = x^2 + 4 \)[/tex], but written in terms of [tex]\( y \)[/tex] instead of [tex]\( x \)[/tex].
- When we set [tex]\( y = f(x) \)[/tex], we get [tex]\( y = x^2 + 4 \)[/tex].
- Reflecting [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex] means swapping the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Now let's determine which transformation appropriately describes [tex]\( g(y) \)[/tex]:
- Option A: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex].
- Reflecting over [tex]\( y = x \)[/tex] swaps [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- This corresponds exactly to how we've defined [tex]\( f(x) = x^2 + 4 \)[/tex] and [tex]\( g(y) = y^2 + 4 \)[/tex].
- Option B: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the [tex]\( y \)[/tex]-axis.
- Reflecting over the [tex]\( y \)[/tex]-axis changes [tex]\( x \)[/tex] to [tex]\(-x\)[/tex].
- [tex]\( f(x) \)[/tex] would then become [tex]\( f(-x) \)[/tex], or [tex]\((-x)^2 + 4 = x^2 + 4 \)[/tex], which is still [tex]\( f(x) \)[/tex], so this doesn't describe a change to [tex]\( g(y) \)[/tex].
- Option C: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the [tex]\( x \)[/tex]-axis.
- Reflecting over the [tex]\( x \)[/tex]-axis changes [tex]\( y \)[/tex] to [tex]\(-y\)[/tex].
- Thus, [tex]\( g(y) \)[/tex] becomes [tex]\( -f(x) \)[/tex], or [tex]\(-(x^2 + 4) = -x^2 - 4 \)[/tex], which doesn't match the form of [tex]\( g(y) \)[/tex].
- Option D: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = 1 \)[/tex].
- Reflecting over [tex]\( y = 1 \)[/tex] would translate the function up or down relative to [tex]\( y = 1 \)[/tex].
- This does not produce a simple [tex]\( y^2 + 4 \)[/tex] transformation.
Combining these interpretations, the correct difference between [tex]\( f(x) \)[/tex] and [tex]\( g(y) \)[/tex] is:
Option A: [tex]\( g(y) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.