Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

The function [tex][tex]$g(x)=|x-6|-8$[/tex][/tex] is graphed. What is the range?

A. [tex]\{y \mid y \ \textgreater \ -8\}[/tex]
B. [tex]\{y \mid y \geq -8\}[/tex]
C. [tex]\{y \mid y \ \textless \ -8\}[/tex]
D. [tex]\{y \mid y \text{ is all real numbers}\}[/tex]


Sagot :

To find the range of the function [tex]\( g(x) = |x - 6| - 8 \)[/tex], let's analyze the behavior of the function step by step.

1. Understanding the Absolute Value Function:
The function [tex]\( g(x) \)[/tex] involves the absolute value expression [tex]\( |x - 6| \)[/tex]. The absolute value function [tex]\( |x| \)[/tex] returns the non-negative value (distance from zero) of [tex]\( x \)[/tex]. Therefore, the expression [tex]\( |x - 6| \)[/tex] represents the distance of [tex]\( x \)[/tex] from 6, which is always non-negative. This means:
[tex]\[ |x - 6| \geq 0 \quad \text{for all } x. \][/tex]

2. Shifting the Absolute Value Function:
The function [tex]\( g(x) = |x - 6| - 8 \)[/tex] subtracts 8 from [tex]\( |x - 6| \)[/tex]. We know that [tex]\( |x - 6| \)[/tex] can take on all non-negative values starting from 0. So, the minimum value of [tex]\( |x - 6| \)[/tex] is 0, which occurs when [tex]\( x = 6 \)[/tex].

3. Determining the Minimum Value of [tex]\( g(x) \)[/tex]:
When [tex]\( x = 6 \)[/tex]:
[tex]\[ g(6) = |6 - 6| - 8 = 0 - 8 = -8. \][/tex]
This shows that the minimum value of [tex]\( g(x) \)[/tex] is -8.

4. Range of [tex]\( g(x) \)[/tex]:
As [tex]\( |x - 6| \)[/tex] increases from 0 upwards without bound (for values of [tex]\( x \)[/tex] other than 6), [tex]\( g(x) \)[/tex] will take on values:
[tex]\[ g(x) = |x - 6| - 8 \geq 0 - 8 = -8. \][/tex]
This means that [tex]\( g(x) \)[/tex] can be equal to -8 or any value greater than -8. Therefore, the range of [tex]\( g(x) \)[/tex] includes all real numbers [tex]\( y \)[/tex] such that [tex]\( y \geq -8 \)[/tex].

Putting this all together, the range of the function [tex]\( g(x) = |x - 6| - 8 \)[/tex] is:
[tex]\[ \{ y \mid y \geq -8 \}. \][/tex]

Hence, the correct choice is:
\[
\{ y \mid y \geq -8 \}.
\