Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the exact value of [tex]\(\cos (c + d)\)[/tex], we can use the provided information and the angle addition formula for cosine. Here's the step-by-step solution:
Given:
- [tex]\(\sin c = \frac{24}{25}\)[/tex] where [tex]\(c\)[/tex] is in Quadrant II
- [tex]\(\cos d = -\frac{3}{4}\)[/tex] where [tex]\(d\)[/tex] is in Quadrant III
### Step 1: Determine [tex]\(\cos c\)[/tex]
Since [tex]\(c\)[/tex] is in Quadrant II, [tex]\(\cos c\)[/tex] will be negative. We use the Pythagorean identity:
[tex]\[ \sin^2(c) + \cos^2(c) = 1 \][/tex]
Given [tex]\(\sin c = \frac{24}{25}\)[/tex]:
[tex]\[ \left(\frac{24}{25}\right)^2 + \cos^2(c) = 1 \][/tex]
[tex]\[ \frac{576}{625} + \cos^2(c) = 1 \][/tex]
Solving for [tex]\(\cos^2(c)\)[/tex]:
[tex]\[ \cos^2(c) = 1 - \frac{576}{625} = \frac{625}{625} - \frac{576}{625} = \frac{49}{625} \][/tex]
Thus:
[tex]\[ \cos(c) = -\sqrt{\frac{49}{625}} = -\frac{7}{25} \][/tex]
### Step 2: Determine [tex]\(\sin d\)[/tex]
Since [tex]\(d\)[/tex] is in Quadrant III, [tex]\(\sin d\)[/tex] will be negative. Again, we use the Pythagorean identity:
[tex]\[ \sin^2(d) + \cos^2(d) = 1 \][/tex]
Given [tex]\(\cos d = -\frac{3}{4}\)[/tex]:
[tex]\[ \sin^2(d) + \left(-\frac{3}{4}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2(d) + \frac{9}{16} = 1 \][/tex]
Solving for [tex]\(\sin^2(d)\)[/tex]:
[tex]\[ \sin^2(d) = 1 - \frac{9}{16} = \frac{16}{16} - \frac{9}{16} = \frac{7}{16} \][/tex]
Thus:
[tex]\[ \sin(d) = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4} \][/tex]
### Step 3: Use the angle addition formula
The cosine of the sum of two angles is given by:
[tex]\[ \cos(c + d) = \cos c \cos d - \sin c \sin d \][/tex]
Substituting the known values:
[tex]\[ \cos(c + d) = \left(-\frac{7}{25}\right) \left(-\frac{3}{4}\right) - \left(\frac{24}{25}\right) \left(-\frac{\sqrt{7}}{4}\right) \][/tex]
[tex]\[ \cos(c + d) = \frac{21}{100} + \frac{24\sqrt{7}}{100} = \frac{21 + 24\sqrt{7}}{100} \][/tex]
Therefore, the exact value of [tex]\(\cos (c + d)\)[/tex] is:
[tex]\[ \boxed{\frac{21 + 24\sqrt{7}}{100}} \][/tex]
Given:
- [tex]\(\sin c = \frac{24}{25}\)[/tex] where [tex]\(c\)[/tex] is in Quadrant II
- [tex]\(\cos d = -\frac{3}{4}\)[/tex] where [tex]\(d\)[/tex] is in Quadrant III
### Step 1: Determine [tex]\(\cos c\)[/tex]
Since [tex]\(c\)[/tex] is in Quadrant II, [tex]\(\cos c\)[/tex] will be negative. We use the Pythagorean identity:
[tex]\[ \sin^2(c) + \cos^2(c) = 1 \][/tex]
Given [tex]\(\sin c = \frac{24}{25}\)[/tex]:
[tex]\[ \left(\frac{24}{25}\right)^2 + \cos^2(c) = 1 \][/tex]
[tex]\[ \frac{576}{625} + \cos^2(c) = 1 \][/tex]
Solving for [tex]\(\cos^2(c)\)[/tex]:
[tex]\[ \cos^2(c) = 1 - \frac{576}{625} = \frac{625}{625} - \frac{576}{625} = \frac{49}{625} \][/tex]
Thus:
[tex]\[ \cos(c) = -\sqrt{\frac{49}{625}} = -\frac{7}{25} \][/tex]
### Step 2: Determine [tex]\(\sin d\)[/tex]
Since [tex]\(d\)[/tex] is in Quadrant III, [tex]\(\sin d\)[/tex] will be negative. Again, we use the Pythagorean identity:
[tex]\[ \sin^2(d) + \cos^2(d) = 1 \][/tex]
Given [tex]\(\cos d = -\frac{3}{4}\)[/tex]:
[tex]\[ \sin^2(d) + \left(-\frac{3}{4}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2(d) + \frac{9}{16} = 1 \][/tex]
Solving for [tex]\(\sin^2(d)\)[/tex]:
[tex]\[ \sin^2(d) = 1 - \frac{9}{16} = \frac{16}{16} - \frac{9}{16} = \frac{7}{16} \][/tex]
Thus:
[tex]\[ \sin(d) = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4} \][/tex]
### Step 3: Use the angle addition formula
The cosine of the sum of two angles is given by:
[tex]\[ \cos(c + d) = \cos c \cos d - \sin c \sin d \][/tex]
Substituting the known values:
[tex]\[ \cos(c + d) = \left(-\frac{7}{25}\right) \left(-\frac{3}{4}\right) - \left(\frac{24}{25}\right) \left(-\frac{\sqrt{7}}{4}\right) \][/tex]
[tex]\[ \cos(c + d) = \frac{21}{100} + \frac{24\sqrt{7}}{100} = \frac{21 + 24\sqrt{7}}{100} \][/tex]
Therefore, the exact value of [tex]\(\cos (c + d)\)[/tex] is:
[tex]\[ \boxed{\frac{21 + 24\sqrt{7}}{100}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.