Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the substitution that transforms the original equation [tex]\(x^8 - 3x^4 + 2 = 0\)[/tex] into a quadratic equation, let's examine each option step-by-step.
### Option 1: [tex]\( u = x^2 \)[/tex]
Substituting [tex]\( u = x^2 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
means revising the powers of [tex]\( x \)[/tex]:
[tex]\[ (u^4) - 3(u^2) + 2 = 0 \][/tex]
which transforms into:
[tex]\[ u^4 - 3u^2 + 2 = 0 \][/tex]
This is not a quadratic equation because the highest power of [tex]\( u \)[/tex] is 4.
### Option 2: [tex]\( u = x^4 \)[/tex]
Substituting [tex]\( u = x^4 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
transforms it to:
[tex]\[ u^2 - 3u + 2 = 0 \][/tex]
This simplifies to:
[tex]\[ u^2 - 3u + 2 = 0 \][/tex]
This is a quadratic equation because the highest power of [tex]\( u \)[/tex] is 2.
### Option 3: [tex]\( u = x^8 \)[/tex]
Substituting [tex]\( u = x^8 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
transforms it to:
[tex]\[ u - 3(x^4) + 2 = 0 \][/tex]
This does not transform into a quadratic form since the variable [tex]\( x^4 \)[/tex] remains and the powers are mixed.
### Option 4: [tex]\( u = x^{16} \)[/tex]
Substituting [tex]\( u = x^{16} \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
attempts to transform it to terms with [tex]\( x \)[/tex]:
[tex]\[ (u^{1/2}) - 3(x^4) + 2 = 0 \][/tex]
This does not transform into a simpler quadratic form either.
Thus, the best substitution to transform the given equation [tex]\( x^8 - 3 x^4 + 2 = 0 \)[/tex] into a quadratic equation is:
[tex]\[ u = x^4 \][/tex]
Therefore, the correct substitution is:
[tex]\[ u = x^4 \][/tex]
### Option 1: [tex]\( u = x^2 \)[/tex]
Substituting [tex]\( u = x^2 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
means revising the powers of [tex]\( x \)[/tex]:
[tex]\[ (u^4) - 3(u^2) + 2 = 0 \][/tex]
which transforms into:
[tex]\[ u^4 - 3u^2 + 2 = 0 \][/tex]
This is not a quadratic equation because the highest power of [tex]\( u \)[/tex] is 4.
### Option 2: [tex]\( u = x^4 \)[/tex]
Substituting [tex]\( u = x^4 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
transforms it to:
[tex]\[ u^2 - 3u + 2 = 0 \][/tex]
This simplifies to:
[tex]\[ u^2 - 3u + 2 = 0 \][/tex]
This is a quadratic equation because the highest power of [tex]\( u \)[/tex] is 2.
### Option 3: [tex]\( u = x^8 \)[/tex]
Substituting [tex]\( u = x^8 \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
transforms it to:
[tex]\[ u - 3(x^4) + 2 = 0 \][/tex]
This does not transform into a quadratic form since the variable [tex]\( x^4 \)[/tex] remains and the powers are mixed.
### Option 4: [tex]\( u = x^{16} \)[/tex]
Substituting [tex]\( u = x^{16} \)[/tex] into the equation:
[tex]\[ x^8 - 3 x^4 + 2 = 0 \][/tex]
attempts to transform it to terms with [tex]\( x \)[/tex]:
[tex]\[ (u^{1/2}) - 3(x^4) + 2 = 0 \][/tex]
This does not transform into a simpler quadratic form either.
Thus, the best substitution to transform the given equation [tex]\( x^8 - 3 x^4 + 2 = 0 \)[/tex] into a quadratic equation is:
[tex]\[ u = x^4 \][/tex]
Therefore, the correct substitution is:
[tex]\[ u = x^4 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.