At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's find the limit of the function [tex]\(\sin \left( \frac{\pi x}{6} \right)\)[/tex] as [tex]\(x\)[/tex] approaches -1.
To determine this limit, we can directly substitute [tex]\(x = -1\)[/tex] into the function and evaluate. Since the sine function is continuous, we can use substitution for the limit:
[tex]\[ \lim_{x \to -1} \sin \left( \frac{\pi x}{6} \right) = \sin \left( \frac{\pi (-1)}{6} \right) \][/tex]
Now, we compute the argument of the sine function:
[tex]\[ \frac{\pi (-1)}{6} = -\frac{\pi}{6} \][/tex]
Next, we need to find the sine of [tex]\(-\frac{\pi}{6}\)[/tex]. Recall that the sine function has the property:
[tex]\[ \sin(-\theta) = -\sin(\theta) \][/tex]
So,
[tex]\[ \sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) \][/tex]
We know from trigonometry that:
[tex]\[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \][/tex]
Thus,
[tex]\[ \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{x \to -1} \sin \left( \frac{\pi x}{6} \right) = -\frac{1}{2} \][/tex]
Given the options:
[tex]\[ -\frac{\sqrt{3}}{2}, \quad -\frac{1}{2}, \quad \frac{1}{2}, \quad \frac{\sqrt{3}}{2} \][/tex]
The correct answer is [tex]\(\boxed{-\frac{1}{2}}\)[/tex].
To determine this limit, we can directly substitute [tex]\(x = -1\)[/tex] into the function and evaluate. Since the sine function is continuous, we can use substitution for the limit:
[tex]\[ \lim_{x \to -1} \sin \left( \frac{\pi x}{6} \right) = \sin \left( \frac{\pi (-1)}{6} \right) \][/tex]
Now, we compute the argument of the sine function:
[tex]\[ \frac{\pi (-1)}{6} = -\frac{\pi}{6} \][/tex]
Next, we need to find the sine of [tex]\(-\frac{\pi}{6}\)[/tex]. Recall that the sine function has the property:
[tex]\[ \sin(-\theta) = -\sin(\theta) \][/tex]
So,
[tex]\[ \sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) \][/tex]
We know from trigonometry that:
[tex]\[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \][/tex]
Thus,
[tex]\[ \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{x \to -1} \sin \left( \frac{\pi x}{6} \right) = -\frac{1}{2} \][/tex]
Given the options:
[tex]\[ -\frac{\sqrt{3}}{2}, \quad -\frac{1}{2}, \quad \frac{1}{2}, \quad \frac{\sqrt{3}}{2} \][/tex]
The correct answer is [tex]\(\boxed{-\frac{1}{2}}\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.