Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domain of the function [tex]\( y = \sin x \)[/tex]:
1. Understanding the Sine Function: The sine function, denoted as [tex]\( \sin(x) \)[/tex], is a periodic function that oscillates between -1 and 1. It is a fundamental trigonometric function commonly used in various mathematical applications.
2. Analyzing the Function's Definition: The sine function is defined for all real numbers. There is no restriction on the values that [tex]\( x \)[/tex] can take because the sine function can compute the sine of any real number.
3. Evaluating Potential Constraints: Let's evaluate each option given in the question.
- Option A: [tex]\( -1 \leq x \leq 1 \)[/tex] is incorrect. This describes the range of [tex]\( \sin(x) \)[/tex], i.e., the output values of [tex]\( \sin(x) \)[/tex], rather than the domain.
- Option B: [tex]\( x \neq n \pi \)[/tex] (where [tex]\( n \)[/tex] is any integer) is also incorrect. This would imply the function is undefined at integer multiples of [tex]\( \pi \)[/tex], which is not true.
- Option C: All real numbers. This is the correct option because [tex]\( \sin(x) \)[/tex] is defined for every real number x.
- Option D: [tex]\( -1 \leq y \leq 1 \)[/tex] is incorrect. This depicts the range of the function rather than the domain.
4. Conclusion: The correct option for the domain of [tex]\( y = \sin x \)[/tex] is:
[tex]\[ \boxed{\text{C. All real numbers}} \][/tex]
1. Understanding the Sine Function: The sine function, denoted as [tex]\( \sin(x) \)[/tex], is a periodic function that oscillates between -1 and 1. It is a fundamental trigonometric function commonly used in various mathematical applications.
2. Analyzing the Function's Definition: The sine function is defined for all real numbers. There is no restriction on the values that [tex]\( x \)[/tex] can take because the sine function can compute the sine of any real number.
3. Evaluating Potential Constraints: Let's evaluate each option given in the question.
- Option A: [tex]\( -1 \leq x \leq 1 \)[/tex] is incorrect. This describes the range of [tex]\( \sin(x) \)[/tex], i.e., the output values of [tex]\( \sin(x) \)[/tex], rather than the domain.
- Option B: [tex]\( x \neq n \pi \)[/tex] (where [tex]\( n \)[/tex] is any integer) is also incorrect. This would imply the function is undefined at integer multiples of [tex]\( \pi \)[/tex], which is not true.
- Option C: All real numbers. This is the correct option because [tex]\( \sin(x) \)[/tex] is defined for every real number x.
- Option D: [tex]\( -1 \leq y \leq 1 \)[/tex] is incorrect. This depicts the range of the function rather than the domain.
4. Conclusion: The correct option for the domain of [tex]\( y = \sin x \)[/tex] is:
[tex]\[ \boxed{\text{C. All real numbers}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.