Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the gravitational force between two astronauts, we use Newton's Law of Universal Gravitation, which can be stated mathematically as:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (both [tex]\( 100 \, \text{kg} \)[/tex] in this case),
- [tex]\( r \)[/tex] is the distance between the centers of the two masses ( [tex]\( 2 \, \text{m} \)[/tex] in this case).
Substitute the given values into the formula:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{100 \, \text{kg} \cdot 100 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Then the formula becomes:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} = 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
Then multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 2500 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 16675 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 1.6675 \times 10^{-7} \, \text{N} \][/tex]
Therefore, the force of gravity between the two astronauts is:
[tex]\[ \boxed{1.67 \times 10^{-7} \, \text{N}} \][/tex]
Thus, the correct answer is:
C. [tex]\(1.67 \times 10^{-7} \, \text{N} \)[/tex]
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (both [tex]\( 100 \, \text{kg} \)[/tex] in this case),
- [tex]\( r \)[/tex] is the distance between the centers of the two masses ( [tex]\( 2 \, \text{m} \)[/tex] in this case).
Substitute the given values into the formula:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{100 \, \text{kg} \cdot 100 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Then the formula becomes:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} = 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
Then multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 2500 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 16675 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 1.6675 \times 10^{-7} \, \text{N} \][/tex]
Therefore, the force of gravity between the two astronauts is:
[tex]\[ \boxed{1.67 \times 10^{-7} \, \text{N}} \][/tex]
Thus, the correct answer is:
C. [tex]\(1.67 \times 10^{-7} \, \text{N} \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.