Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the gravitational force between two astronauts, we use Newton's Law of Universal Gravitation, which can be stated mathematically as:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (both [tex]\( 100 \, \text{kg} \)[/tex] in this case),
- [tex]\( r \)[/tex] is the distance between the centers of the two masses ( [tex]\( 2 \, \text{m} \)[/tex] in this case).
Substitute the given values into the formula:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{100 \, \text{kg} \cdot 100 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Then the formula becomes:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} = 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
Then multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 2500 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 16675 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 1.6675 \times 10^{-7} \, \text{N} \][/tex]
Therefore, the force of gravity between the two astronauts is:
[tex]\[ \boxed{1.67 \times 10^{-7} \, \text{N}} \][/tex]
Thus, the correct answer is:
C. [tex]\(1.67 \times 10^{-7} \, \text{N} \)[/tex]
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (both [tex]\( 100 \, \text{kg} \)[/tex] in this case),
- [tex]\( r \)[/tex] is the distance between the centers of the two masses ( [tex]\( 2 \, \text{m} \)[/tex] in this case).
Substitute the given values into the formula:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{100 \, \text{kg} \cdot 100 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Then the formula becomes:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} = 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
Then multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 2500 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 16675 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 1.6675 \times 10^{-7} \, \text{N} \][/tex]
Therefore, the force of gravity between the two astronauts is:
[tex]\[ \boxed{1.67 \times 10^{-7} \, \text{N}} \][/tex]
Thus, the correct answer is:
C. [tex]\(1.67 \times 10^{-7} \, \text{N} \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.