At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve this problem, we can use Newton's Law of Universal Gravitation, which states:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given:
- [tex]\( F = 8.67 \times 10^{-2} \, \text{N} \)[/tex],
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 = 5 \times 10^8 \, \text{kg} \)[/tex],
- [tex]\( r = 50000 \, \text{m} \)[/tex],
We need to find [tex]\( m_2 \)[/tex].
Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Substitute the given values into the equation:
[tex]\[ m_2 = \frac{8.67 \times 10^{-2} \, \text{N} \cdot (50000 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately for clarity:
[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \, \text{N} \cdot 2500000000 \, \text{m}^2 \][/tex]
[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \cdot 2.5 \times 10^9 \][/tex]
[tex]\[ \text{Numerator} = 2.1675 \times 10^8 \][/tex]
[tex]\[ \text{Denominator} = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg} \][/tex]
[tex]\[ \text{Denominator} = 3.33715 \times 10^{-2} \, \text{kg} \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ m_2 = \frac{2.1675 \times 10^8}{3.33715 \times 10^{-2}} \][/tex]
[tex]\[ m_2 \approx 6.495063152 \times 10^9 \, \text{kg} \][/tex]
So the mass of the other asteroid is approximately [tex]\( 6.495063152 \times 10^9 \, \text{kg} \)[/tex].
Therefore, the closest answer is:
B. [tex]\( 6.5 \times 10^9 \, \text{kg} \)[/tex]
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given:
- [tex]\( F = 8.67 \times 10^{-2} \, \text{N} \)[/tex],
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 = 5 \times 10^8 \, \text{kg} \)[/tex],
- [tex]\( r = 50000 \, \text{m} \)[/tex],
We need to find [tex]\( m_2 \)[/tex].
Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Substitute the given values into the equation:
[tex]\[ m_2 = \frac{8.67 \times 10^{-2} \, \text{N} \cdot (50000 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately for clarity:
[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \, \text{N} \cdot 2500000000 \, \text{m}^2 \][/tex]
[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \cdot 2.5 \times 10^9 \][/tex]
[tex]\[ \text{Numerator} = 2.1675 \times 10^8 \][/tex]
[tex]\[ \text{Denominator} = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg} \][/tex]
[tex]\[ \text{Denominator} = 3.33715 \times 10^{-2} \, \text{kg} \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ m_2 = \frac{2.1675 \times 10^8}{3.33715 \times 10^{-2}} \][/tex]
[tex]\[ m_2 \approx 6.495063152 \times 10^9 \, \text{kg} \][/tex]
So the mass of the other asteroid is approximately [tex]\( 6.495063152 \times 10^9 \, \text{kg} \)[/tex].
Therefore, the closest answer is:
B. [tex]\( 6.5 \times 10^9 \, \text{kg} \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.