At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Question 5 of 10

Two asteroids are [tex]50,000 \, m[/tex] apart. One has a mass of [tex]5 \times 10^8 \, kg[/tex]. If the force of gravity between them is [tex]8.67 \times 10^{-2} \, N[/tex], what is the mass of the other asteroid?

A. [tex]7.2 \times 10^9 \, kg[/tex]

B. [tex]6.5 \times 10^9 \, kg[/tex]

C. [tex]5.0 \times 10^8 \, kg[/tex]

D. [tex]5.8 \times 10^8 \, kg[/tex]


Sagot :

To solve this problem, we can use Newton's Law of Universal Gravitation, which states:

[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.

Given:
- [tex]\( F = 8.67 \times 10^{-2} \, \text{N} \)[/tex],
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 = 5 \times 10^8 \, \text{kg} \)[/tex],
- [tex]\( r = 50000 \, \text{m} \)[/tex],

We need to find [tex]\( m_2 \)[/tex].

Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:

[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]

Substitute the given values into the equation:

[tex]\[ m_2 = \frac{8.67 \times 10^{-2} \, \text{N} \cdot (50000 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg}} \][/tex]

Calculate the numerator and the denominator separately for clarity:

[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \, \text{N} \cdot 2500000000 \, \text{m}^2 \][/tex]

[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \cdot 2.5 \times 10^9 \][/tex]

[tex]\[ \text{Numerator} = 2.1675 \times 10^8 \][/tex]

[tex]\[ \text{Denominator} = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg} \][/tex]

[tex]\[ \text{Denominator} = 3.33715 \times 10^{-2} \, \text{kg} \][/tex]

Now, divide the numerator by the denominator:

[tex]\[ m_2 = \frac{2.1675 \times 10^8}{3.33715 \times 10^{-2}} \][/tex]

[tex]\[ m_2 \approx 6.495063152 \times 10^9 \, \text{kg} \][/tex]

So the mass of the other asteroid is approximately [tex]\( 6.495063152 \times 10^9 \, \text{kg} \)[/tex].

Therefore, the closest answer is:

B. [tex]\( 6.5 \times 10^9 \, \text{kg} \)[/tex]