Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Question 5 of 10

Two asteroids are [tex]50,000 \, m[/tex] apart. One has a mass of [tex]5 \times 10^8 \, kg[/tex]. If the force of gravity between them is [tex]8.67 \times 10^{-2} \, N[/tex], what is the mass of the other asteroid?

A. [tex]7.2 \times 10^9 \, kg[/tex]

B. [tex]6.5 \times 10^9 \, kg[/tex]

C. [tex]5.0 \times 10^8 \, kg[/tex]

D. [tex]5.8 \times 10^8 \, kg[/tex]


Sagot :

To solve this problem, we can use Newton's Law of Universal Gravitation, which states:

[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.

Given:
- [tex]\( F = 8.67 \times 10^{-2} \, \text{N} \)[/tex],
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 = 5 \times 10^8 \, \text{kg} \)[/tex],
- [tex]\( r = 50000 \, \text{m} \)[/tex],

We need to find [tex]\( m_2 \)[/tex].

Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:

[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]

Substitute the given values into the equation:

[tex]\[ m_2 = \frac{8.67 \times 10^{-2} \, \text{N} \cdot (50000 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg}} \][/tex]

Calculate the numerator and the denominator separately for clarity:

[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \, \text{N} \cdot 2500000000 \, \text{m}^2 \][/tex]

[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \cdot 2.5 \times 10^9 \][/tex]

[tex]\[ \text{Numerator} = 2.1675 \times 10^8 \][/tex]

[tex]\[ \text{Denominator} = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg} \][/tex]

[tex]\[ \text{Denominator} = 3.33715 \times 10^{-2} \, \text{kg} \][/tex]

Now, divide the numerator by the denominator:

[tex]\[ m_2 = \frac{2.1675 \times 10^8}{3.33715 \times 10^{-2}} \][/tex]

[tex]\[ m_2 \approx 6.495063152 \times 10^9 \, \text{kg} \][/tex]

So the mass of the other asteroid is approximately [tex]\( 6.495063152 \times 10^9 \, \text{kg} \)[/tex].

Therefore, the closest answer is:

B. [tex]\( 6.5 \times 10^9 \, \text{kg} \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.