Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Question 5 of 10

Two asteroids are [tex]50,000 \, m[/tex] apart. One has a mass of [tex]5 \times 10^8 \, kg[/tex]. If the force of gravity between them is [tex]8.67 \times 10^{-2} \, N[/tex], what is the mass of the other asteroid?

A. [tex]7.2 \times 10^9 \, kg[/tex]

B. [tex]6.5 \times 10^9 \, kg[/tex]

C. [tex]5.0 \times 10^8 \, kg[/tex]

D. [tex]5.8 \times 10^8 \, kg[/tex]

Sagot :

To solve this problem, we can use Newton's Law of Universal Gravitation, which states:

[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.

Given:
- [tex]\( F = 8.67 \times 10^{-2} \, \text{N} \)[/tex],
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 = 5 \times 10^8 \, \text{kg} \)[/tex],
- [tex]\( r = 50000 \, \text{m} \)[/tex],

We need to find [tex]\( m_2 \)[/tex].

Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:

[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]

Substitute the given values into the equation:

[tex]\[ m_2 = \frac{8.67 \times 10^{-2} \, \text{N} \cdot (50000 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg}} \][/tex]

Calculate the numerator and the denominator separately for clarity:

[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \, \text{N} \cdot 2500000000 \, \text{m}^2 \][/tex]

[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \cdot 2.5 \times 10^9 \][/tex]

[tex]\[ \text{Numerator} = 2.1675 \times 10^8 \][/tex]

[tex]\[ \text{Denominator} = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg} \][/tex]

[tex]\[ \text{Denominator} = 3.33715 \times 10^{-2} \, \text{kg} \][/tex]

Now, divide the numerator by the denominator:

[tex]\[ m_2 = \frac{2.1675 \times 10^8}{3.33715 \times 10^{-2}} \][/tex]

[tex]\[ m_2 \approx 6.495063152 \times 10^9 \, \text{kg} \][/tex]

So the mass of the other asteroid is approximately [tex]\( 6.495063152 \times 10^9 \, \text{kg} \)[/tex].

Therefore, the closest answer is:

B. [tex]\( 6.5 \times 10^9 \, \text{kg} \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.