Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we can use Newton's Law of Universal Gravitation, which states:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given:
- [tex]\( F = 8.67 \times 10^{-2} \, \text{N} \)[/tex],
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 = 5 \times 10^8 \, \text{kg} \)[/tex],
- [tex]\( r = 50000 \, \text{m} \)[/tex],
We need to find [tex]\( m_2 \)[/tex].
Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Substitute the given values into the equation:
[tex]\[ m_2 = \frac{8.67 \times 10^{-2} \, \text{N} \cdot (50000 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately for clarity:
[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \, \text{N} \cdot 2500000000 \, \text{m}^2 \][/tex]
[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \cdot 2.5 \times 10^9 \][/tex]
[tex]\[ \text{Numerator} = 2.1675 \times 10^8 \][/tex]
[tex]\[ \text{Denominator} = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg} \][/tex]
[tex]\[ \text{Denominator} = 3.33715 \times 10^{-2} \, \text{kg} \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ m_2 = \frac{2.1675 \times 10^8}{3.33715 \times 10^{-2}} \][/tex]
[tex]\[ m_2 \approx 6.495063152 \times 10^9 \, \text{kg} \][/tex]
So the mass of the other asteroid is approximately [tex]\( 6.495063152 \times 10^9 \, \text{kg} \)[/tex].
Therefore, the closest answer is:
B. [tex]\( 6.5 \times 10^9 \, \text{kg} \)[/tex]
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given:
- [tex]\( F = 8.67 \times 10^{-2} \, \text{N} \)[/tex],
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 = 5 \times 10^8 \, \text{kg} \)[/tex],
- [tex]\( r = 50000 \, \text{m} \)[/tex],
We need to find [tex]\( m_2 \)[/tex].
Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Substitute the given values into the equation:
[tex]\[ m_2 = \frac{8.67 \times 10^{-2} \, \text{N} \cdot (50000 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately for clarity:
[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \, \text{N} \cdot 2500000000 \, \text{m}^2 \][/tex]
[tex]\[ \text{Numerator} = 8.67 \times 10^{-2} \cdot 2.5 \times 10^9 \][/tex]
[tex]\[ \text{Numerator} = 2.1675 \times 10^8 \][/tex]
[tex]\[ \text{Denominator} = 6.67430 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 5 \times 10^8 \, \text{kg} \][/tex]
[tex]\[ \text{Denominator} = 3.33715 \times 10^{-2} \, \text{kg} \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ m_2 = \frac{2.1675 \times 10^8}{3.33715 \times 10^{-2}} \][/tex]
[tex]\[ m_2 \approx 6.495063152 \times 10^9 \, \text{kg} \][/tex]
So the mass of the other asteroid is approximately [tex]\( 6.495063152 \times 10^9 \, \text{kg} \)[/tex].
Therefore, the closest answer is:
B. [tex]\( 6.5 \times 10^9 \, \text{kg} \)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.