Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the point where the terminal side of an angle measuring [tex]\(\frac{\pi}{6}\)[/tex] radians intersects the unit circle, we need to evaluate the cosine and sine of [tex]\(\frac{\pi}{6}\)[/tex].
1. Understanding the Angle:
- [tex]\(\frac{\pi}{6}\)[/tex] radians corresponds to 30 degrees in the unit circle.
2. Cosine and Sine Values:
- The value of [tex]\(\cos(\frac{\pi}{6})\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex].
- The value of [tex]\(\sin(\frac{\pi}{6})\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
3. Intersection Point:
- The coordinates of the point where the terminal side of the angle intersects the unit circle are [tex]\((\cos(\frac{\pi}{6}), \sin(\frac{\pi}{6}))\)[/tex].
- Plugging in the values:
[tex]\[ (\cos(\frac{\pi}{6}), \sin(\frac{\pi}{6})) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \][/tex]
4. Choosing the Correct Answer:
- We compare this point with the provided multiple choices:
- [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex]
- [tex]\(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex]
- [tex]\(\left(\frac{\sqrt{3}}{3}, \frac{1}{2}\right)\)[/tex]
- [tex]\(\left(\frac{1}{2}, \frac{\sqrt{3}}{3}\right)\)[/tex]
5. Conclusion:
- The correct point is [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex].
Thus, the terminal side of an angle measuring [tex]\(\frac{\pi}{6}\)[/tex] radians intersects the unit circle at the point [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex], which corresponds to the first choice.
1. Understanding the Angle:
- [tex]\(\frac{\pi}{6}\)[/tex] radians corresponds to 30 degrees in the unit circle.
2. Cosine and Sine Values:
- The value of [tex]\(\cos(\frac{\pi}{6})\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex].
- The value of [tex]\(\sin(\frac{\pi}{6})\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
3. Intersection Point:
- The coordinates of the point where the terminal side of the angle intersects the unit circle are [tex]\((\cos(\frac{\pi}{6}), \sin(\frac{\pi}{6}))\)[/tex].
- Plugging in the values:
[tex]\[ (\cos(\frac{\pi}{6}), \sin(\frac{\pi}{6})) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \][/tex]
4. Choosing the Correct Answer:
- We compare this point with the provided multiple choices:
- [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex]
- [tex]\(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex]
- [tex]\(\left(\frac{\sqrt{3}}{3}, \frac{1}{2}\right)\)[/tex]
- [tex]\(\left(\frac{1}{2}, \frac{\sqrt{3}}{3}\right)\)[/tex]
5. Conclusion:
- The correct point is [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex].
Thus, the terminal side of an angle measuring [tex]\(\frac{\pi}{6}\)[/tex] radians intersects the unit circle at the point [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex], which corresponds to the first choice.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.