Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the point where the terminal side of an angle measuring [tex]\(\frac{\pi}{6}\)[/tex] radians intersects the unit circle, we need to evaluate the cosine and sine of [tex]\(\frac{\pi}{6}\)[/tex].
1. Understanding the Angle:
- [tex]\(\frac{\pi}{6}\)[/tex] radians corresponds to 30 degrees in the unit circle.
2. Cosine and Sine Values:
- The value of [tex]\(\cos(\frac{\pi}{6})\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex].
- The value of [tex]\(\sin(\frac{\pi}{6})\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
3. Intersection Point:
- The coordinates of the point where the terminal side of the angle intersects the unit circle are [tex]\((\cos(\frac{\pi}{6}), \sin(\frac{\pi}{6}))\)[/tex].
- Plugging in the values:
[tex]\[ (\cos(\frac{\pi}{6}), \sin(\frac{\pi}{6})) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \][/tex]
4. Choosing the Correct Answer:
- We compare this point with the provided multiple choices:
- [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex]
- [tex]\(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex]
- [tex]\(\left(\frac{\sqrt{3}}{3}, \frac{1}{2}\right)\)[/tex]
- [tex]\(\left(\frac{1}{2}, \frac{\sqrt{3}}{3}\right)\)[/tex]
5. Conclusion:
- The correct point is [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex].
Thus, the terminal side of an angle measuring [tex]\(\frac{\pi}{6}\)[/tex] radians intersects the unit circle at the point [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex], which corresponds to the first choice.
1. Understanding the Angle:
- [tex]\(\frac{\pi}{6}\)[/tex] radians corresponds to 30 degrees in the unit circle.
2. Cosine and Sine Values:
- The value of [tex]\(\cos(\frac{\pi}{6})\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex].
- The value of [tex]\(\sin(\frac{\pi}{6})\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
3. Intersection Point:
- The coordinates of the point where the terminal side of the angle intersects the unit circle are [tex]\((\cos(\frac{\pi}{6}), \sin(\frac{\pi}{6}))\)[/tex].
- Plugging in the values:
[tex]\[ (\cos(\frac{\pi}{6}), \sin(\frac{\pi}{6})) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \][/tex]
4. Choosing the Correct Answer:
- We compare this point with the provided multiple choices:
- [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex]
- [tex]\(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex]
- [tex]\(\left(\frac{\sqrt{3}}{3}, \frac{1}{2}\right)\)[/tex]
- [tex]\(\left(\frac{1}{2}, \frac{\sqrt{3}}{3}\right)\)[/tex]
5. Conclusion:
- The correct point is [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex].
Thus, the terminal side of an angle measuring [tex]\(\frac{\pi}{6}\)[/tex] radians intersects the unit circle at the point [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex], which corresponds to the first choice.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.