Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the reference angle [tex]\( r \)[/tex] for the given angle [tex]\( \theta = \frac{1}{12} \)[/tex], we need to consider how reference angles work in various quadrants.
1. Identifying the Quadrant To Which [tex]\( \theta \)[/tex] Belongs:
The angle [tex]\( \theta = \frac{1}{12} \)[/tex] is in radians. Convert [tex]\( \theta \)[/tex] into degrees if necessary for easier understanding, knowing that:
[tex]\[ 1 \text{ radian} \approx 57.2958 \text{ degrees} \][/tex]
Therefore,
[tex]\[ \theta = \frac{1}{12} \approx 0.08333 \text{ radians} \][/tex]
This value is very small and falls within the first quadrant (where angles range from [tex]\( 0 \)[/tex] to [tex]\( \frac{\pi}{2} \)[/tex]).
2. Finding the Reference Angle:
The reference angle [tex]\( r \)[/tex] of [tex]\( \theta \)[/tex] in the first quadrant is simply [tex]\( \theta \)[/tex] itself.
Thus, the equation used to determine the reference angle [tex]\( r \)[/tex] when [tex]\( \theta = \frac{1}{12} \)[/tex] is:
[tex]\[ r = \theta \][/tex]
So, the appropriate equation from the given options is:
[tex]\[ r = \theta \][/tex]
This result matches the expected value of [tex]\( r \)[/tex] for the given [tex]\( \theta \)[/tex].
1. Identifying the Quadrant To Which [tex]\( \theta \)[/tex] Belongs:
The angle [tex]\( \theta = \frac{1}{12} \)[/tex] is in radians. Convert [tex]\( \theta \)[/tex] into degrees if necessary for easier understanding, knowing that:
[tex]\[ 1 \text{ radian} \approx 57.2958 \text{ degrees} \][/tex]
Therefore,
[tex]\[ \theta = \frac{1}{12} \approx 0.08333 \text{ radians} \][/tex]
This value is very small and falls within the first quadrant (where angles range from [tex]\( 0 \)[/tex] to [tex]\( \frac{\pi}{2} \)[/tex]).
2. Finding the Reference Angle:
The reference angle [tex]\( r \)[/tex] of [tex]\( \theta \)[/tex] in the first quadrant is simply [tex]\( \theta \)[/tex] itself.
Thus, the equation used to determine the reference angle [tex]\( r \)[/tex] when [tex]\( \theta = \frac{1}{12} \)[/tex] is:
[tex]\[ r = \theta \][/tex]
So, the appropriate equation from the given options is:
[tex]\[ r = \theta \][/tex]
This result matches the expected value of [tex]\( r \)[/tex] for the given [tex]\( \theta \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.