Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Given the equations:
1. [tex]\( |4x - 2| = -6 \)[/tex]
2. [tex]\( |-2 - x| = 9 \)[/tex]
3. [tex]\( |3x + 6| = 6 \)[/tex]
4. [tex]\( |-2x + 8| = 0 \)[/tex]
We'll solve each equation and identify if any have no solutions.
### Equation 1: [tex]\( |4x - 2| = -6 \)[/tex]
The absolute value expression [tex]\(|4x - 2|\)[/tex] represents a distance, which is always non-negative. Therefore:
[tex]\[ |4x - 2| \geq 0 \][/tex]
Since [tex]\(-6\)[/tex] is negative, this equation cannot be true for any value of [tex]\(x\)[/tex]. Thus, this equation has no solution.
### Equation 2: [tex]\( |-2 - x| = 9 \)[/tex]
We solve for [tex]\(x\)[/tex] using the properties of absolute values. This equation has two cases:
[tex]\[ |-2 - x| = 9 \Rightarrow -2 - x = 9 \quad \text{or} \quad -2 - x = -9 \][/tex]
Case 1:
[tex]\[ -2 - x = 9 \][/tex]
[tex]\[ -x = 11 \][/tex]
[tex]\[ x = -11 \][/tex]
Case 2:
[tex]\[ -2 - x = -9 \][/tex]
[tex]\[ -x = -7 \][/tex]
[tex]\[ x = 7 \][/tex]
Both cases provide valid solutions ([tex]\(x = -11\)[/tex] and [tex]\(x = 7\)[/tex]), so this equation has solutions.
### Equation 3: [tex]\( |3x + 6| = 6 \)[/tex]
We solve for [tex]\(x\)[/tex] using the properties of absolute values. This equation also has two cases:
[tex]\[ |3x + 6| = 6 \Rightarrow 3x + 6 = 6 \quad \text{or} \quad 3x + 6 = -6 \][/tex]
Case 1:
[tex]\[ 3x + 6 = 6 \][/tex]
[tex]\[ 3x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
Case 2:
[tex]\[ 3x + 6 = -6 \][/tex]
[tex]\[ 3x = -12 \][/tex]
[tex]\[ x = -4 \][/tex]
Both cases provide valid solutions ([tex]\(x = 0\)[/tex] and [tex]\(x = -4\)[/tex]), so this equation has solutions.
### Equation 4: [tex]\( |-2x + 8| = 0 \)[/tex]
The absolute value expression equals zero only when the quantity inside it is zero:
[tex]\[ |-2x + 8| = 0 \Rightarrow -2x + 8 = 0 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ -2x + 8 = 0 \][/tex]
[tex]\[ -2x = -8 \][/tex]
[tex]\[ x = 4 \][/tex]
This provides a valid solution ([tex]\(x = 4\)[/tex]), so this equation has a solution.
### Conclusion
The only equation that has no solution is:
[tex]\[ |4x - 2| = -6 \][/tex]
1. [tex]\( |4x - 2| = -6 \)[/tex]
2. [tex]\( |-2 - x| = 9 \)[/tex]
3. [tex]\( |3x + 6| = 6 \)[/tex]
4. [tex]\( |-2x + 8| = 0 \)[/tex]
We'll solve each equation and identify if any have no solutions.
### Equation 1: [tex]\( |4x - 2| = -6 \)[/tex]
The absolute value expression [tex]\(|4x - 2|\)[/tex] represents a distance, which is always non-negative. Therefore:
[tex]\[ |4x - 2| \geq 0 \][/tex]
Since [tex]\(-6\)[/tex] is negative, this equation cannot be true for any value of [tex]\(x\)[/tex]. Thus, this equation has no solution.
### Equation 2: [tex]\( |-2 - x| = 9 \)[/tex]
We solve for [tex]\(x\)[/tex] using the properties of absolute values. This equation has two cases:
[tex]\[ |-2 - x| = 9 \Rightarrow -2 - x = 9 \quad \text{or} \quad -2 - x = -9 \][/tex]
Case 1:
[tex]\[ -2 - x = 9 \][/tex]
[tex]\[ -x = 11 \][/tex]
[tex]\[ x = -11 \][/tex]
Case 2:
[tex]\[ -2 - x = -9 \][/tex]
[tex]\[ -x = -7 \][/tex]
[tex]\[ x = 7 \][/tex]
Both cases provide valid solutions ([tex]\(x = -11\)[/tex] and [tex]\(x = 7\)[/tex]), so this equation has solutions.
### Equation 3: [tex]\( |3x + 6| = 6 \)[/tex]
We solve for [tex]\(x\)[/tex] using the properties of absolute values. This equation also has two cases:
[tex]\[ |3x + 6| = 6 \Rightarrow 3x + 6 = 6 \quad \text{or} \quad 3x + 6 = -6 \][/tex]
Case 1:
[tex]\[ 3x + 6 = 6 \][/tex]
[tex]\[ 3x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
Case 2:
[tex]\[ 3x + 6 = -6 \][/tex]
[tex]\[ 3x = -12 \][/tex]
[tex]\[ x = -4 \][/tex]
Both cases provide valid solutions ([tex]\(x = 0\)[/tex] and [tex]\(x = -4\)[/tex]), so this equation has solutions.
### Equation 4: [tex]\( |-2x + 8| = 0 \)[/tex]
The absolute value expression equals zero only when the quantity inside it is zero:
[tex]\[ |-2x + 8| = 0 \Rightarrow -2x + 8 = 0 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ -2x + 8 = 0 \][/tex]
[tex]\[ -2x = -8 \][/tex]
[tex]\[ x = 4 \][/tex]
This provides a valid solution ([tex]\(x = 4\)[/tex]), so this equation has a solution.
### Conclusion
The only equation that has no solution is:
[tex]\[ |4x - 2| = -6 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.