Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the solution set of the compound inequality [tex]\(3x + 2 \leq 5x + 6 \leq 6x + 7\)[/tex], we need to break it down into two individual inequalities and solve each one separately. Let's break it into two separate inequalities:
1. [tex]\(3x + 2 \leq 5x + 6\)[/tex]
2. [tex]\(5x + 6 \leq 6x + 7\)[/tex]
### Solve the first inequality [tex]\(3x + 2 \leq 5x + 6\)[/tex]:
1. Start by subtracting [tex]\(3x\)[/tex] from both sides:
[tex]\[ 2 \leq 2x + 6 \][/tex]
2. Next, subtract 6 from both sides:
[tex]\[ 2 - 6 \leq 2x \][/tex]
[tex]\[ -4 \leq 2x \][/tex]
3. Finally, divide both sides by 2:
[tex]\[ -2 \leq x \][/tex]
This simplifies to:
[tex]\[ x \geq -2 \][/tex]
### Solve the second inequality [tex]\(5x + 6 \leq 6x + 7\)[/tex]:
1. Start by subtracting [tex]\(5x\)[/tex] from both sides:
[tex]\[ 6 \leq x + 7 \][/tex]
2. Next, subtract 7 from both sides:
[tex]\[ 6 - 7 \leq x \][/tex]
[tex]\[ -1 \leq x \][/tex]
This simplifies to:
[tex]\[ x \geq -1 \][/tex]
### Combine the solutions of the two inequalities:
- From the first inequality, we have [tex]\(x \geq -2\)[/tex].
- From the second inequality, we have [tex]\(x \geq -1\)[/tex].
Since [tex]\(x \geq -1\)[/tex] is a stricter constraint than [tex]\(x \geq -2\)[/tex], the solution to the compound inequality is [tex]\(x \geq -1\)[/tex].
Therefore, the solution set of [tex]\(3x + 2 \leq 5x + 6 \leq 6x + 7\)[/tex] is [tex]\(x \geq -1\)[/tex].
1. [tex]\(3x + 2 \leq 5x + 6\)[/tex]
2. [tex]\(5x + 6 \leq 6x + 7\)[/tex]
### Solve the first inequality [tex]\(3x + 2 \leq 5x + 6\)[/tex]:
1. Start by subtracting [tex]\(3x\)[/tex] from both sides:
[tex]\[ 2 \leq 2x + 6 \][/tex]
2. Next, subtract 6 from both sides:
[tex]\[ 2 - 6 \leq 2x \][/tex]
[tex]\[ -4 \leq 2x \][/tex]
3. Finally, divide both sides by 2:
[tex]\[ -2 \leq x \][/tex]
This simplifies to:
[tex]\[ x \geq -2 \][/tex]
### Solve the second inequality [tex]\(5x + 6 \leq 6x + 7\)[/tex]:
1. Start by subtracting [tex]\(5x\)[/tex] from both sides:
[tex]\[ 6 \leq x + 7 \][/tex]
2. Next, subtract 7 from both sides:
[tex]\[ 6 - 7 \leq x \][/tex]
[tex]\[ -1 \leq x \][/tex]
This simplifies to:
[tex]\[ x \geq -1 \][/tex]
### Combine the solutions of the two inequalities:
- From the first inequality, we have [tex]\(x \geq -2\)[/tex].
- From the second inequality, we have [tex]\(x \geq -1\)[/tex].
Since [tex]\(x \geq -1\)[/tex] is a stricter constraint than [tex]\(x \geq -2\)[/tex], the solution to the compound inequality is [tex]\(x \geq -1\)[/tex].
Therefore, the solution set of [tex]\(3x + 2 \leq 5x + 6 \leq 6x + 7\)[/tex] is [tex]\(x \geq -1\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.