Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the lengths of the two adjacent sides of the parallelogram, we need to solve for [tex]\( n \)[/tex] and then use it to find the specific side lengths.
1. Identify the expressions for the sides:
- One side of the parallelogram is [tex]\( 5n - 6 \)[/tex] cm.
- The opposite side is [tex]\( 3n - 2 \)[/tex] cm.
- An adjacent side is [tex]\( 2n + 3 \)[/tex] cm.
2. Set up an equation for the opposite sides being equal:
Since opposite sides of a parallelogram are equal, we set the expressions for the opposite sides equal to each other:
[tex]\[ 5n - 6 = 3n - 2 \][/tex]
3. Solve for [tex]\( n \)[/tex]:
[tex]\[ 5n - 6 = 3n - 2 \][/tex]
Subtract [tex]\( 3n \)[/tex] from both sides:
[tex]\[ 2n - 6 = -2 \][/tex]
Add 6 to both sides:
[tex]\[ 2n = 4 \][/tex]
Divide by 2:
[tex]\[ n = 2 \][/tex]
4. Substitute [tex]\( n = 2 \)[/tex] into the expressions for the side lengths:
- Length of the side [tex]\( 5n - 6 \)[/tex]:
[tex]\[ 5(2) - 6 = 10 - 6 = 4 \, \text{cm} \][/tex]
- Length of the adjacent side [tex]\( 2n + 3 \)[/tex]:
[tex]\[ 2(2) + 3 = 4 + 3 = 7 \, \text{cm} \][/tex]
5. Conclusion:
The lengths of the two adjacent sides of the parallelogram are [tex]\( 4 \, \text{cm} \)[/tex] and [tex]\( 7 \, \text{cm} \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{4 \, \text{cm} \text{ and } 7 \, \text{cm}} \][/tex]
1. Identify the expressions for the sides:
- One side of the parallelogram is [tex]\( 5n - 6 \)[/tex] cm.
- The opposite side is [tex]\( 3n - 2 \)[/tex] cm.
- An adjacent side is [tex]\( 2n + 3 \)[/tex] cm.
2. Set up an equation for the opposite sides being equal:
Since opposite sides of a parallelogram are equal, we set the expressions for the opposite sides equal to each other:
[tex]\[ 5n - 6 = 3n - 2 \][/tex]
3. Solve for [tex]\( n \)[/tex]:
[tex]\[ 5n - 6 = 3n - 2 \][/tex]
Subtract [tex]\( 3n \)[/tex] from both sides:
[tex]\[ 2n - 6 = -2 \][/tex]
Add 6 to both sides:
[tex]\[ 2n = 4 \][/tex]
Divide by 2:
[tex]\[ n = 2 \][/tex]
4. Substitute [tex]\( n = 2 \)[/tex] into the expressions for the side lengths:
- Length of the side [tex]\( 5n - 6 \)[/tex]:
[tex]\[ 5(2) - 6 = 10 - 6 = 4 \, \text{cm} \][/tex]
- Length of the adjacent side [tex]\( 2n + 3 \)[/tex]:
[tex]\[ 2(2) + 3 = 4 + 3 = 7 \, \text{cm} \][/tex]
5. Conclusion:
The lengths of the two adjacent sides of the parallelogram are [tex]\( 4 \, \text{cm} \)[/tex] and [tex]\( 7 \, \text{cm} \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{4 \, \text{cm} \text{ and } 7 \, \text{cm}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.