At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Jacob is cutting a tile in the shape of a parallelogram. Two opposite angles have measures of [tex][tex]$(6n - 70)^{\circ}$[/tex][/tex] and [tex][tex]$(2n + 10)^{\circ}$[/tex][/tex].

What are the two different angle measures of the parallelogram-shaped tile?

A. [tex]20^{\circ}[/tex] and [tex]160^{\circ}[/tex]
B. [tex]50^{\circ}[/tex] and [tex]130^{\circ}[/tex]
C. [tex]30^{\circ}[/tex] and [tex]150^{\circ}[/tex]
D. [tex]70^{\circ}[/tex] and [tex]110^{\circ}[/tex]

Sagot :

To find the measures of the two different angles of the parallelogram-shaped tile, let's start by noting an important property of parallelograms: opposite angles are equal and the sum of adjacent angles is [tex]\(180^{\circ}\)[/tex].

Given:
1. One pair of opposite angles are [tex]\( (6n - 70)^{\circ} \)[/tex]
2. The other pair of opposite angles are [tex]\( (2n + 10)^{\circ} \)[/tex]

Because opposite angles in a parallelogram are equal, we can set up the equation:
[tex]\[ 6n - 70 = 2n + 10 \][/tex]

Now, solve this equation for [tex]\( n \)[/tex]:
[tex]\[ 6n - 2n = 70 + 10 \][/tex]
[tex]\[ 4n = 80 \][/tex]
[tex]\[ n = 20 \][/tex]

Now, substitute [tex]\( n = 20 \)[/tex] back into the expressions for the angles to find the measures:

[tex]\[ 6n - 70 = 6(20) - 70 = 120 - 70 = 50 \][/tex]
[tex]\[ 2n + 10 = 2(20) + 10 = 40 + 10 = 50 \][/tex]

So one pair of opposite angles measures [tex]\( 50^{\circ} \)[/tex].

To find the adjacent angles, we use the fact that the sum of adjacent angles in a parallelogram is [tex]\( 180^{\circ} \)[/tex]:

[tex]\[ 180^{\circ} - 50^{\circ} = 130^{\circ} \][/tex]

Therefore, the two different angle measures of the parallelogram-shaped tile are:
[tex]\[ 50^{\circ} \text{ and } 130^{\circ} \][/tex]

So the correct answer is:
[tex]\[ \boxed{50^{\circ} \text{ and } 130^{\circ}} \][/tex]