Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's solve this problem step-by-step.
### Step 1: Understanding the Properties of a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] Triangle
A [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle is a special type of right triangle. In such a triangle:
- The two legs are congruent (i.e., they have the same length).
- The hypotenuse (the side opposite the right angle) is [tex]$\sqrt{2}$[/tex] times longer than each leg.
### Step 2: Given Information
The hypotenuse of the triangle measures [tex]$10 \sqrt{5}$[/tex] inches.
### Step 3: Setting Up the Relationship Between the Legs and the Hypotenuse
Let's denote the length of each leg as [tex]\( a \)[/tex]. According to the properties of a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle, the relationship between the hypotenuse and a leg is given by:
[tex]\[ \text{Hypotenuse} = a \sqrt{2} \][/tex]
### Step 4: Substituting the Known Value
We know the hypotenuse measures [tex]$10 \sqrt{5}$[/tex] inches:
[tex]\[ 10 \sqrt{5} = a \sqrt{2} \][/tex]
### Step 5: Solving for [tex]\( a \)[/tex]
To solve for [tex]\( a \)[/tex], we need to isolate [tex]\( a \)[/tex] from the equation:
[tex]\[ a = \frac{10 \sqrt{5}}{\sqrt{2}} \][/tex]
### Step 6: Simplifying the Expression
Divide the numerator and the denominator inside the fraction:
[tex]\[ a = \frac{10 \sqrt{5}}{\sqrt{2}} = 10 \left(\frac{\sqrt{5}}{\sqrt{2}}\right) \][/tex]
[tex]\[ \frac{\sqrt{5}}{\sqrt{2}} = \sqrt{\frac{5}{2}} \][/tex]
So,
[tex]\[ a = 10 \sqrt{\frac{5}{2}} \][/tex]
### Step 7: Numerical Value of the Leg Length
Now, compute the numerical value of [tex]\( a \)[/tex]:
[tex]\[ \sqrt{\frac{5}{2}} \approx 1.58113883008 \][/tex]
Therefore,
[tex]\[ a = 10 \times 1.58113883008 = 15.811388300841896 \][/tex]
### Step 8: Results
We have the measurements for both the hypotenuse and the legs of the triangle:
- The hypotenuse is [tex]\( 22.360679774997898 \)[/tex] inches.
- Each leg is [tex]\( 15.811388300841896 \)[/tex] inches.
These results give the final dimensions of the [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle.
### Step 1: Understanding the Properties of a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] Triangle
A [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle is a special type of right triangle. In such a triangle:
- The two legs are congruent (i.e., they have the same length).
- The hypotenuse (the side opposite the right angle) is [tex]$\sqrt{2}$[/tex] times longer than each leg.
### Step 2: Given Information
The hypotenuse of the triangle measures [tex]$10 \sqrt{5}$[/tex] inches.
### Step 3: Setting Up the Relationship Between the Legs and the Hypotenuse
Let's denote the length of each leg as [tex]\( a \)[/tex]. According to the properties of a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle, the relationship between the hypotenuse and a leg is given by:
[tex]\[ \text{Hypotenuse} = a \sqrt{2} \][/tex]
### Step 4: Substituting the Known Value
We know the hypotenuse measures [tex]$10 \sqrt{5}$[/tex] inches:
[tex]\[ 10 \sqrt{5} = a \sqrt{2} \][/tex]
### Step 5: Solving for [tex]\( a \)[/tex]
To solve for [tex]\( a \)[/tex], we need to isolate [tex]\( a \)[/tex] from the equation:
[tex]\[ a = \frac{10 \sqrt{5}}{\sqrt{2}} \][/tex]
### Step 6: Simplifying the Expression
Divide the numerator and the denominator inside the fraction:
[tex]\[ a = \frac{10 \sqrt{5}}{\sqrt{2}} = 10 \left(\frac{\sqrt{5}}{\sqrt{2}}\right) \][/tex]
[tex]\[ \frac{\sqrt{5}}{\sqrt{2}} = \sqrt{\frac{5}{2}} \][/tex]
So,
[tex]\[ a = 10 \sqrt{\frac{5}{2}} \][/tex]
### Step 7: Numerical Value of the Leg Length
Now, compute the numerical value of [tex]\( a \)[/tex]:
[tex]\[ \sqrt{\frac{5}{2}} \approx 1.58113883008 \][/tex]
Therefore,
[tex]\[ a = 10 \times 1.58113883008 = 15.811388300841896 \][/tex]
### Step 8: Results
We have the measurements for both the hypotenuse and the legs of the triangle:
- The hypotenuse is [tex]\( 22.360679774997898 \)[/tex] inches.
- Each leg is [tex]\( 15.811388300841896 \)[/tex] inches.
These results give the final dimensions of the [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.