At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To balance the combustion reaction between octane ([tex]\(C_8H_{18}\)[/tex]) and oxygen ([tex]\(O_2\)[/tex]), we need to ensure that the number of atoms for each element is the same on both sides of the equation. Let's go through the process step-by-step.
### Step 1: Write the unbalanced equation
[tex]\[2 C_8H_{18} + O_2 \rightarrow CO_2 + H_2O\][/tex]
### Step 2: Count the atoms of each element in octane
For [tex]\(2 C_8H_{18}\)[/tex]:
- Carbon: [tex]\(2 \times 8 = 16\)[/tex]
- Hydrogen: [tex]\(2 \times 18 = 36\)[/tex]
### Step 3: Balance the carbon atoms by adjusting the coefficient of [tex]\(CO_2\)[/tex]
Since we have 16 carbon atoms from octane, we need 16 [tex]\(CO_2\)[/tex] molecules because each [tex]\(CO_2\)[/tex] molecule contains one carbon atom.
[tex]\[2 C_8H_{18} + O_2 \rightarrow 16 CO_2 + H_2O\][/tex]
### Step 4: Balance the hydrogen atoms by adjusting the coefficient of [tex]\(H_2O\)[/tex]
Since we have 36 hydrogen atoms from octane, we need 18 [tex]\(H_2O\)[/tex] molecules because each [tex]\(H_2O\)[/tex] molecule contains two hydrogen atoms.
[tex]\[2 C_8H_{18} + O_2 \rightarrow 16 CO_2 + 18 H_2O\][/tex]
### Step 5: Balance the oxygen atoms
- We have [tex]\(16 CO_2\)[/tex] molecules, contributing [tex]\(16 \times 2 = 32\)[/tex] oxygen atoms.
- We have [tex]\(18 H_2O\)[/tex] molecules, contributing [tex]\(18 \times 1 = 18\)[/tex] oxygen atoms.
Total oxygen atoms required on the product side:
[tex]\[32 + 18 = 50\][/tex]
Since each [tex]\(O_2\)[/tex] molecule contains 2 oxygen atoms, the number of [tex]\(O_2\)[/tex] molecules needed on the reactant side:
[tex]\[ \frac{50}{2} = 25\][/tex]
### Step 6: Write the balanced equation
[tex]\[2 C_8H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2O\][/tex]
### Final balanced equation
The combustion reaction between octane and oxygen is balanced as follows:
[tex]\[2 C_8H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2O\][/tex]
### Step 1: Write the unbalanced equation
[tex]\[2 C_8H_{18} + O_2 \rightarrow CO_2 + H_2O\][/tex]
### Step 2: Count the atoms of each element in octane
For [tex]\(2 C_8H_{18}\)[/tex]:
- Carbon: [tex]\(2 \times 8 = 16\)[/tex]
- Hydrogen: [tex]\(2 \times 18 = 36\)[/tex]
### Step 3: Balance the carbon atoms by adjusting the coefficient of [tex]\(CO_2\)[/tex]
Since we have 16 carbon atoms from octane, we need 16 [tex]\(CO_2\)[/tex] molecules because each [tex]\(CO_2\)[/tex] molecule contains one carbon atom.
[tex]\[2 C_8H_{18} + O_2 \rightarrow 16 CO_2 + H_2O\][/tex]
### Step 4: Balance the hydrogen atoms by adjusting the coefficient of [tex]\(H_2O\)[/tex]
Since we have 36 hydrogen atoms from octane, we need 18 [tex]\(H_2O\)[/tex] molecules because each [tex]\(H_2O\)[/tex] molecule contains two hydrogen atoms.
[tex]\[2 C_8H_{18} + O_2 \rightarrow 16 CO_2 + 18 H_2O\][/tex]
### Step 5: Balance the oxygen atoms
- We have [tex]\(16 CO_2\)[/tex] molecules, contributing [tex]\(16 \times 2 = 32\)[/tex] oxygen atoms.
- We have [tex]\(18 H_2O\)[/tex] molecules, contributing [tex]\(18 \times 1 = 18\)[/tex] oxygen atoms.
Total oxygen atoms required on the product side:
[tex]\[32 + 18 = 50\][/tex]
Since each [tex]\(O_2\)[/tex] molecule contains 2 oxygen atoms, the number of [tex]\(O_2\)[/tex] molecules needed on the reactant side:
[tex]\[ \frac{50}{2} = 25\][/tex]
### Step 6: Write the balanced equation
[tex]\[2 C_8H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2O\][/tex]
### Final balanced equation
The combustion reaction between octane and oxygen is balanced as follows:
[tex]\[2 C_8H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2O\][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.