Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To add the given polynomials [tex]\( \left(g^2 - 4g^4 + 5g + 9\right) \)[/tex] and [tex]\( \left(-3g^3 + 3g^2 - 6\right) \)[/tex], we follow these steps:
### Step 1: Rewrite terms that are subtracted as addition of the opposite
Given the polynomials:
[tex]\[ (g^2 - 4g^4 + 5g + 9) + (-3g^3 + 3g^2 - 6) \][/tex]
We can rewrite the expression to clearly show each term:
[tex]\[ g^2 + (-4g^4) + 5g + 9 + (-3g^3) + 3g^2 + (-6) \][/tex]
### Step 2: Group like terms
Group the terms according to their powers of [tex]\( g \)[/tex]:
[tex]\[ (-4g^4) + (-3g^3) + (g^2 + 3g^2) + 5g + (9 - 6) \][/tex]
### Step 3: Combine like terms
Combine the coefficients of like terms:
[tex]\[ -4g^4 - 3g^3 + (1g^2 + 3g^2) + 5g + (9 - 6) \][/tex]
Simplifying the coefficients, we get:
[tex]\[ -4g^4 - 3g^3 + 4g^2 + 5g + 3 \][/tex]
### Step 4: Write the resulting polynomial in standard form
Combine all the terms to write the polynomial in standard form:
[tex]\[ -4g^4 - 3g^3 + 4g^2 + 5g + 3 \][/tex]
Therefore, the sum of the given polynomials is:
[tex]\[ \boxed{-4g^4 - 3g^3 + 4g^2 + 5g + 3} \][/tex]
### Step 1: Rewrite terms that are subtracted as addition of the opposite
Given the polynomials:
[tex]\[ (g^2 - 4g^4 + 5g + 9) + (-3g^3 + 3g^2 - 6) \][/tex]
We can rewrite the expression to clearly show each term:
[tex]\[ g^2 + (-4g^4) + 5g + 9 + (-3g^3) + 3g^2 + (-6) \][/tex]
### Step 2: Group like terms
Group the terms according to their powers of [tex]\( g \)[/tex]:
[tex]\[ (-4g^4) + (-3g^3) + (g^2 + 3g^2) + 5g + (9 - 6) \][/tex]
### Step 3: Combine like terms
Combine the coefficients of like terms:
[tex]\[ -4g^4 - 3g^3 + (1g^2 + 3g^2) + 5g + (9 - 6) \][/tex]
Simplifying the coefficients, we get:
[tex]\[ -4g^4 - 3g^3 + 4g^2 + 5g + 3 \][/tex]
### Step 4: Write the resulting polynomial in standard form
Combine all the terms to write the polynomial in standard form:
[tex]\[ -4g^4 - 3g^3 + 4g^2 + 5g + 3 \][/tex]
Therefore, the sum of the given polynomials is:
[tex]\[ \boxed{-4g^4 - 3g^3 + 4g^2 + 5g + 3} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.