Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the range of the function given in the problem, let's break down the details step by step:
1. Identify the Protein Content from Different Sources:
- Livia eats a chicken drumstick which provides 11 grams of protein.
- Livia also eats [tex]\(x\)[/tex] cheese sticks, each cheese stick providing 7 grams of protein.
2. Formulate the Equation:
- The total protein [tex]\(y\)[/tex] that Livia consumes can be expressed as:
[tex]\[ y = 11 + 7x \][/tex]
where:
- [tex]\(y\)[/tex] is the total grams of protein.
- [tex]\(x\)[/tex] is the number of cheese sticks consumed.
3. Explore the Possible Values for [tex]\(x\)[/tex]:
- Since Livia can eat any number of cheese sticks, including fractions, [tex]\(x\)[/tex] is any non-negative real number (i.e., [tex]\(x \geq 0\)[/tex]).
4. Determine the Minimum Value of [tex]\(y\)[/tex]:
- If Livia eats no cheese sticks ([tex]\(x = 0\)[/tex]):
[tex]\[ y = 11 + 7(0) = 11 \][/tex]
- Therefore, the minimum value of [tex]\(y\)[/tex] is 11 grams of protein.
5. Analyze the Range of [tex]\(y\)[/tex]:
- As [tex]\(x\)[/tex] increases (considering it can be any non-negative real number), [tex]\(y\)[/tex] will continue to increase because [tex]\(7x\)[/tex] adds to the initial 11 grams.
- There is no upper bound to [tex]\(y\)[/tex] since [tex]\(x\)[/tex] can become arbitrarily large.
6. Conclusion on the Range of the Function:
- Since [tex]\(x\)[/tex] can be any non-negative real number, and the minimum total protein intake [tex]\(y\)[/tex] starts at 11 grams and can go up indefinitely, we conclude that:
[tex]\[ y \text{ can be any real number greater than or equal to 11} \][/tex]
Therefore, the correct answer is:
[tex]\[ \text{The range of the function is all real numbers greater than or equal to 11} \][/tex]
1. Identify the Protein Content from Different Sources:
- Livia eats a chicken drumstick which provides 11 grams of protein.
- Livia also eats [tex]\(x\)[/tex] cheese sticks, each cheese stick providing 7 grams of protein.
2. Formulate the Equation:
- The total protein [tex]\(y\)[/tex] that Livia consumes can be expressed as:
[tex]\[ y = 11 + 7x \][/tex]
where:
- [tex]\(y\)[/tex] is the total grams of protein.
- [tex]\(x\)[/tex] is the number of cheese sticks consumed.
3. Explore the Possible Values for [tex]\(x\)[/tex]:
- Since Livia can eat any number of cheese sticks, including fractions, [tex]\(x\)[/tex] is any non-negative real number (i.e., [tex]\(x \geq 0\)[/tex]).
4. Determine the Minimum Value of [tex]\(y\)[/tex]:
- If Livia eats no cheese sticks ([tex]\(x = 0\)[/tex]):
[tex]\[ y = 11 + 7(0) = 11 \][/tex]
- Therefore, the minimum value of [tex]\(y\)[/tex] is 11 grams of protein.
5. Analyze the Range of [tex]\(y\)[/tex]:
- As [tex]\(x\)[/tex] increases (considering it can be any non-negative real number), [tex]\(y\)[/tex] will continue to increase because [tex]\(7x\)[/tex] adds to the initial 11 grams.
- There is no upper bound to [tex]\(y\)[/tex] since [tex]\(x\)[/tex] can become arbitrarily large.
6. Conclusion on the Range of the Function:
- Since [tex]\(x\)[/tex] can be any non-negative real number, and the minimum total protein intake [tex]\(y\)[/tex] starts at 11 grams and can go up indefinitely, we conclude that:
[tex]\[ y \text{ can be any real number greater than or equal to 11} \][/tex]
Therefore, the correct answer is:
[tex]\[ \text{The range of the function is all real numbers greater than or equal to 11} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.