Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The composition [tex]D_{0,0.75}(x, y) \cdot D_{O, 2}(x, y)[/tex] is applied to [tex]\triangle LMN[/tex] to create [tex]\triangle L^{\prime \prime}M^{\prime \prime}N^{\prime \prime}[/tex].

Which statements must be true regarding the two triangles? Check all that apply.

- [tex]\angle M = \angle M^{\prime \prime}[/tex]
- [tex]\triangle LMN \sim \triangle L^{\prime \prime}M^{\prime \prime}N^{\prime \prime}[/tex]
- [tex]\triangle LMN = \triangle L^{\prime \prime}M^{\prime \prime}N^{\prime \prime}[/tex]
- The coordinates of vertex [tex]L^{\prime \prime}[/tex] are [tex](-3, 1.5)[/tex].
- The coordinates of vertex [tex]N^{\prime \prime}[/tex] are [tex](3, -1.5)[/tex].
- The coordinates of vertex [tex]M^{\prime \prime}[/tex] are [tex](1.5, -1.5)[/tex].


Sagot :

When we apply the composition of transformations to a triangle [tex]\( \triangle LMN \)[/tex] and obtain [tex]\( \triangle L^{\prime \prime} M^{\prime \prime} N^{\prime \prime} \)[/tex], we should analyze each statement to determine its validity.

1. Angle Preservation:
- [tex]\( \angle M = \angle M^{\prime\prime} \)[/tex]
- True. Dilations preserve angles. Since dilation only changes the size of the triangle without altering the angles, [tex]\( \angle M \)[/tex] remains equal to [tex]\( \angle M^{\prime\prime} \)[/tex].

2. Triangles are Similar:
- [tex]\( \triangle LMN \sim \triangle L^{\prime\prime} M^{\prime\prime} N^{\prime\prime} \)[/tex]
- True. Dilations result in similar triangles because they preserve the shape of the triangle while changing its size. As a result, [tex]\( \triangle LMN \)[/tex] is similar to [tex]\( \triangle L^{\prime\prime} M^{\prime\prime} N^{\prime\prime} \)[/tex].

3. Triangles are Congruent:
- [tex]\( \triangle LMN = \triangle L^{\prime\prime} M^{\prime\prime} N^{\prime\prime} \)[/tex]
- False. Congruence means the triangles have the same size and shape. Since the dilation factors involved (0.75 and 2) combine to a factor of 1.5, the size of [tex]\( \triangle L^{\prime \prime} M^{\prime \prime} N^{\prime \prime} \)[/tex] is 1.5 times the size of [tex]\( \triangle LMN \)[/tex]. Therefore, they are not congruent.

4. Coordinates of Vertex [tex]\( L^{\prime\prime} \)[/tex]:
- The coordinates of vertex [tex]\( L^{\prime \prime} \)[/tex] are [tex]\( (-3, 1.5) \)[/tex]
- True. The coordinates given for [tex]\( L^{\prime\prime} \)[/tex] as [tex]\( (-3, 1.5) \)[/tex] match the result after applying the composite dilation.

5. Coordinates of Vertex [tex]\( N^{\prime\prime} \)[/tex]:
- The coordinates of vertex [tex]\( N^{\prime \prime} \)[/tex] are [tex]\( (3, -1.5) \)[/tex]
- True. The coordinates given for [tex]\( N^{\prime\prime} \)[/tex] as [tex]\( (3, -1.5) \)[/tex] match the result after applying the composite dilation.

6. Coordinates of Vertex [tex]\( M^{\prime\prime} \)[/tex]:
- The coordinates of vertex [tex]\( M^{\prime \prime} \)[/tex] are [tex]\( (1.5, -1.5) \)[/tex]
- True. The coordinates given for [tex]\( M^{\prime\prime} \)[/tex] as [tex]\( (1.5, -1.5) \)[/tex] match the result after applying the composite dilation.

Therefore, the statements that must be true are:
- [tex]\( \angle M = \angle M^{\prime\prime} \)[/tex]
- [tex]\( \triangle LMN \sim \triangle L^{\prime\prime} M^{\prime\prime} N^{\prime\prime} \)[/tex]
- The coordinates of vertex [tex]\( L^{\prime \prime} \)[/tex] are [tex]\( (-3, 1.5) \)[/tex]
- The coordinates of vertex [tex]\( N^{\prime \prime} \)[/tex] are [tex]\( (3, -1.5) \)[/tex]
- The coordinates of vertex [tex]\( M^{\prime \prime} \)[/tex] are [tex]\( (1.5, -1.5) \)[/tex]

The statement that must be false is:
- [tex]\( \triangle LMN = \triangle L^{\prime \prime} M^{\prime \prime} N^{\prime \prime} \)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.