Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A math student has a plan to solve the following system by the elimination method. To eliminate the [tex]\( x \)[/tex]-terms, he wants to multiply the top equation by 7. What should he multiply the second equation by so that when he adds the equations, the [tex]\( x \)[/tex]-terms are eliminated?

[tex]\[
\begin{array}{l}
-3x - 7y = -56 \\
-7x + 10y = 1
\end{array}
\][/tex]

[tex]\(\square\)[/tex]


Sagot :

Let's solve the given system of linear equations using the elimination method and determine the appropriate factor to multiply the second equation by so that the [tex]\( x \)[/tex]-terms will cancel out:

The system of equations is:
[tex]\[ \begin{array}{l} -3x - 7y = -56 \\ -7x + 10y = 1 \end{array} \][/tex]

Step 1: Multiply the first equation by a number that will make the coefficients of [tex]\( x \)[/tex] equal in absolute value.

The student decided to multiply the top equation by [tex]\( 7 \)[/tex]. Let's multiply the first equation by [tex]\( 7 \)[/tex]:
[tex]\[ 7(-3x - 7y) = 7(-56) \][/tex]
This simplifies to:
[tex]\[ -21x - 49y = -392 \][/tex]

Step 2: Identify the appropriate factor to multiply the second equation by so that the [tex]\( x \)[/tex]-terms will have the same or opposite coefficients.

To eliminate the [tex]\( x \)[/tex]-terms, we need the coefficient of [tex]\( x \)[/tex] in the second equation to be [tex]\( 21 \)[/tex] with the same sign as in the modified first equation if we want to subtract, or [tex]\( 21 \)[/tex] with opposite sign if we want to add.

We want the coefficients of [tex]\( x \)[/tex] to be perfectly opposite so that they cancel out when we add the equations.

We notice that the second equation has a term [tex]\( -7x \)[/tex]. To make this term [tex]\( 21x \)[/tex], we should multiply it by [tex]\( 3 \)[/tex]:
[tex]\[ 3(-7x + 10y) = 3(1) \][/tex]
This simplifies to:
[tex]\[ -21x + 30y = 3 \][/tex]

Step 3: Add the modified versions of the two equations to eliminate the [tex]\( x \)[/tex]-terms:

Add the resulting equations:
[tex]\[ \begin{array}{l} (-21x - 49y) + (-21x + 30y) = -392 + 3 \\ -21x - 21x + (-49y + 30y) = -392 + 3 \\ -42x - 19y = -389 \end{array} \][/tex]

Since we were able to align the coefficient of [tex]\( x \)[/tex] in both equations using the factors [tex]\( 7 \)[/tex] and [tex]\( 3 \)[/tex] respectively, the appropriate factor to multiply the second equation by is:

[tex]\[ \boxed{3} \][/tex]