Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve the given system of linear equations using the elimination method and determine the appropriate factor to multiply the second equation by so that the [tex]\( x \)[/tex]-terms will cancel out:
The system of equations is:
[tex]\[ \begin{array}{l} -3x - 7y = -56 \\ -7x + 10y = 1 \end{array} \][/tex]
Step 1: Multiply the first equation by a number that will make the coefficients of [tex]\( x \)[/tex] equal in absolute value.
The student decided to multiply the top equation by [tex]\( 7 \)[/tex]. Let's multiply the first equation by [tex]\( 7 \)[/tex]:
[tex]\[ 7(-3x - 7y) = 7(-56) \][/tex]
This simplifies to:
[tex]\[ -21x - 49y = -392 \][/tex]
Step 2: Identify the appropriate factor to multiply the second equation by so that the [tex]\( x \)[/tex]-terms will have the same or opposite coefficients.
To eliminate the [tex]\( x \)[/tex]-terms, we need the coefficient of [tex]\( x \)[/tex] in the second equation to be [tex]\( 21 \)[/tex] with the same sign as in the modified first equation if we want to subtract, or [tex]\( 21 \)[/tex] with opposite sign if we want to add.
We want the coefficients of [tex]\( x \)[/tex] to be perfectly opposite so that they cancel out when we add the equations.
We notice that the second equation has a term [tex]\( -7x \)[/tex]. To make this term [tex]\( 21x \)[/tex], we should multiply it by [tex]\( 3 \)[/tex]:
[tex]\[ 3(-7x + 10y) = 3(1) \][/tex]
This simplifies to:
[tex]\[ -21x + 30y = 3 \][/tex]
Step 3: Add the modified versions of the two equations to eliminate the [tex]\( x \)[/tex]-terms:
Add the resulting equations:
[tex]\[ \begin{array}{l} (-21x - 49y) + (-21x + 30y) = -392 + 3 \\ -21x - 21x + (-49y + 30y) = -392 + 3 \\ -42x - 19y = -389 \end{array} \][/tex]
Since we were able to align the coefficient of [tex]\( x \)[/tex] in both equations using the factors [tex]\( 7 \)[/tex] and [tex]\( 3 \)[/tex] respectively, the appropriate factor to multiply the second equation by is:
[tex]\[ \boxed{3} \][/tex]
The system of equations is:
[tex]\[ \begin{array}{l} -3x - 7y = -56 \\ -7x + 10y = 1 \end{array} \][/tex]
Step 1: Multiply the first equation by a number that will make the coefficients of [tex]\( x \)[/tex] equal in absolute value.
The student decided to multiply the top equation by [tex]\( 7 \)[/tex]. Let's multiply the first equation by [tex]\( 7 \)[/tex]:
[tex]\[ 7(-3x - 7y) = 7(-56) \][/tex]
This simplifies to:
[tex]\[ -21x - 49y = -392 \][/tex]
Step 2: Identify the appropriate factor to multiply the second equation by so that the [tex]\( x \)[/tex]-terms will have the same or opposite coefficients.
To eliminate the [tex]\( x \)[/tex]-terms, we need the coefficient of [tex]\( x \)[/tex] in the second equation to be [tex]\( 21 \)[/tex] with the same sign as in the modified first equation if we want to subtract, or [tex]\( 21 \)[/tex] with opposite sign if we want to add.
We want the coefficients of [tex]\( x \)[/tex] to be perfectly opposite so that they cancel out when we add the equations.
We notice that the second equation has a term [tex]\( -7x \)[/tex]. To make this term [tex]\( 21x \)[/tex], we should multiply it by [tex]\( 3 \)[/tex]:
[tex]\[ 3(-7x + 10y) = 3(1) \][/tex]
This simplifies to:
[tex]\[ -21x + 30y = 3 \][/tex]
Step 3: Add the modified versions of the two equations to eliminate the [tex]\( x \)[/tex]-terms:
Add the resulting equations:
[tex]\[ \begin{array}{l} (-21x - 49y) + (-21x + 30y) = -392 + 3 \\ -21x - 21x + (-49y + 30y) = -392 + 3 \\ -42x - 19y = -389 \end{array} \][/tex]
Since we were able to align the coefficient of [tex]\( x \)[/tex] in both equations using the factors [tex]\( 7 \)[/tex] and [tex]\( 3 \)[/tex] respectively, the appropriate factor to multiply the second equation by is:
[tex]\[ \boxed{3} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.