Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the given system of linear equations using the elimination method and determine the appropriate factor to multiply the second equation by so that the [tex]\( x \)[/tex]-terms will cancel out:
The system of equations is:
[tex]\[ \begin{array}{l} -3x - 7y = -56 \\ -7x + 10y = 1 \end{array} \][/tex]
Step 1: Multiply the first equation by a number that will make the coefficients of [tex]\( x \)[/tex] equal in absolute value.
The student decided to multiply the top equation by [tex]\( 7 \)[/tex]. Let's multiply the first equation by [tex]\( 7 \)[/tex]:
[tex]\[ 7(-3x - 7y) = 7(-56) \][/tex]
This simplifies to:
[tex]\[ -21x - 49y = -392 \][/tex]
Step 2: Identify the appropriate factor to multiply the second equation by so that the [tex]\( x \)[/tex]-terms will have the same or opposite coefficients.
To eliminate the [tex]\( x \)[/tex]-terms, we need the coefficient of [tex]\( x \)[/tex] in the second equation to be [tex]\( 21 \)[/tex] with the same sign as in the modified first equation if we want to subtract, or [tex]\( 21 \)[/tex] with opposite sign if we want to add.
We want the coefficients of [tex]\( x \)[/tex] to be perfectly opposite so that they cancel out when we add the equations.
We notice that the second equation has a term [tex]\( -7x \)[/tex]. To make this term [tex]\( 21x \)[/tex], we should multiply it by [tex]\( 3 \)[/tex]:
[tex]\[ 3(-7x + 10y) = 3(1) \][/tex]
This simplifies to:
[tex]\[ -21x + 30y = 3 \][/tex]
Step 3: Add the modified versions of the two equations to eliminate the [tex]\( x \)[/tex]-terms:
Add the resulting equations:
[tex]\[ \begin{array}{l} (-21x - 49y) + (-21x + 30y) = -392 + 3 \\ -21x - 21x + (-49y + 30y) = -392 + 3 \\ -42x - 19y = -389 \end{array} \][/tex]
Since we were able to align the coefficient of [tex]\( x \)[/tex] in both equations using the factors [tex]\( 7 \)[/tex] and [tex]\( 3 \)[/tex] respectively, the appropriate factor to multiply the second equation by is:
[tex]\[ \boxed{3} \][/tex]
The system of equations is:
[tex]\[ \begin{array}{l} -3x - 7y = -56 \\ -7x + 10y = 1 \end{array} \][/tex]
Step 1: Multiply the first equation by a number that will make the coefficients of [tex]\( x \)[/tex] equal in absolute value.
The student decided to multiply the top equation by [tex]\( 7 \)[/tex]. Let's multiply the first equation by [tex]\( 7 \)[/tex]:
[tex]\[ 7(-3x - 7y) = 7(-56) \][/tex]
This simplifies to:
[tex]\[ -21x - 49y = -392 \][/tex]
Step 2: Identify the appropriate factor to multiply the second equation by so that the [tex]\( x \)[/tex]-terms will have the same or opposite coefficients.
To eliminate the [tex]\( x \)[/tex]-terms, we need the coefficient of [tex]\( x \)[/tex] in the second equation to be [tex]\( 21 \)[/tex] with the same sign as in the modified first equation if we want to subtract, or [tex]\( 21 \)[/tex] with opposite sign if we want to add.
We want the coefficients of [tex]\( x \)[/tex] to be perfectly opposite so that they cancel out when we add the equations.
We notice that the second equation has a term [tex]\( -7x \)[/tex]. To make this term [tex]\( 21x \)[/tex], we should multiply it by [tex]\( 3 \)[/tex]:
[tex]\[ 3(-7x + 10y) = 3(1) \][/tex]
This simplifies to:
[tex]\[ -21x + 30y = 3 \][/tex]
Step 3: Add the modified versions of the two equations to eliminate the [tex]\( x \)[/tex]-terms:
Add the resulting equations:
[tex]\[ \begin{array}{l} (-21x - 49y) + (-21x + 30y) = -392 + 3 \\ -21x - 21x + (-49y + 30y) = -392 + 3 \\ -42x - 19y = -389 \end{array} \][/tex]
Since we were able to align the coefficient of [tex]\( x \)[/tex] in both equations using the factors [tex]\( 7 \)[/tex] and [tex]\( 3 \)[/tex] respectively, the appropriate factor to multiply the second equation by is:
[tex]\[ \boxed{3} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.