At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To create a polynomial function [tex]\( f(x) \)[/tex] of degree 3 that has the zeros [tex]\(4\)[/tex], [tex]\(2i\)[/tex], and [tex]\(-2i\)[/tex], we can follow these steps:
1. List the zeros: The given zeros are [tex]\( 4 \)[/tex], [tex]\( 2i \)[/tex], and [tex]\( -2i \)[/tex].
2. Form the factors: For each zero [tex]\( a \)[/tex], there is a factor [tex]\( (x - a) \)[/tex] in the polynomial. Therefore, the factors are:
[tex]\[ (x - 4), \, (x - 2i), \, (x + 2i) \][/tex]
3. Multiply the factors: The next step is to multiply these factors together to form the polynomial.
Let's start by multiplying the complex conjugate factors [tex]\( (x - 2i) \)[/tex] and [tex]\( (x + 2i) \)[/tex] first:
[tex]\[ (x - 2i)(x + 2i) \][/tex]
This is a difference of squares, which simplifies as follows:
[tex]\[ x^2 - (2i)^2 = x^2 - 4(-1) = x^2 + 4 \][/tex]
Now, we need to multiply this result by the remaining factor [tex]\( (x - 4) \)[/tex]:
[tex]\[ (x - 4)(x^2 + 4) \][/tex]
Expand this product by distributing [tex]\( x - 4 \)[/tex] over [tex]\( x^2 + 4 \)[/tex]:
[tex]\[ (x - 4)(x^2 + 4) = x(x^2 + 4) - 4(x^2 + 4) \][/tex]
Distribute each term:
[tex]\[ x^3 + 4x - 4x^2 - 16 \][/tex]
Arrange the terms in descending order of power:
[tex]\[ x^3 - 4x^2 + 4x - 16 \][/tex]
Thus, the polynomial [tex]\( f(x) \)[/tex] that has the zeros [tex]\(4\)[/tex], [tex]\(2i\)[/tex], and [tex]\(-2i\)[/tex] is:
[tex]\[ f(x) = x^3 - 4x^2 + 4x - 16 \][/tex]
This polynomial meets the given conditions.
1. List the zeros: The given zeros are [tex]\( 4 \)[/tex], [tex]\( 2i \)[/tex], and [tex]\( -2i \)[/tex].
2. Form the factors: For each zero [tex]\( a \)[/tex], there is a factor [tex]\( (x - a) \)[/tex] in the polynomial. Therefore, the factors are:
[tex]\[ (x - 4), \, (x - 2i), \, (x + 2i) \][/tex]
3. Multiply the factors: The next step is to multiply these factors together to form the polynomial.
Let's start by multiplying the complex conjugate factors [tex]\( (x - 2i) \)[/tex] and [tex]\( (x + 2i) \)[/tex] first:
[tex]\[ (x - 2i)(x + 2i) \][/tex]
This is a difference of squares, which simplifies as follows:
[tex]\[ x^2 - (2i)^2 = x^2 - 4(-1) = x^2 + 4 \][/tex]
Now, we need to multiply this result by the remaining factor [tex]\( (x - 4) \)[/tex]:
[tex]\[ (x - 4)(x^2 + 4) \][/tex]
Expand this product by distributing [tex]\( x - 4 \)[/tex] over [tex]\( x^2 + 4 \)[/tex]:
[tex]\[ (x - 4)(x^2 + 4) = x(x^2 + 4) - 4(x^2 + 4) \][/tex]
Distribute each term:
[tex]\[ x^3 + 4x - 4x^2 - 16 \][/tex]
Arrange the terms in descending order of power:
[tex]\[ x^3 - 4x^2 + 4x - 16 \][/tex]
Thus, the polynomial [tex]\( f(x) \)[/tex] that has the zeros [tex]\(4\)[/tex], [tex]\(2i\)[/tex], and [tex]\(-2i\)[/tex] is:
[tex]\[ f(x) = x^3 - 4x^2 + 4x - 16 \][/tex]
This polynomial meets the given conditions.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.