At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's go through the steps to evaluate the expression [tex]\(1.2^3 + (-1.9)^4\)[/tex] and find its value to the nearest tenth.
1. Evaluate [tex]\(1.2^3\)[/tex]:
We need to calculate [tex]\(1.2\)[/tex] raised to the power of [tex]\(3\)[/tex]:
[tex]\[ 1.2^3 = 1.2 \times 1.2 \times 1.2 = 1.728 \][/tex]
Therefore, [tex]\(1.2^3 = 1.728\)[/tex].
2. Evaluate [tex]\((-1.9)^4\)[/tex]:
Next, we calculate [tex]\((-1.9)\)[/tex] raised to the power of [tex]\(4\)[/tex]:
[tex]\[ (-1.9)^4 = (-1.9) \times (-1.9) \times (-1.9) \times (-1.9) = 13.0321 \][/tex]
While squaring [tex]\(-1.9\)[/tex] twice, we observe that multiplying a negative number an even number of times yields a positive result.
3. Add the two values together:
Sum the results from the previous steps:
[tex]\[ 1.728 + 13.0321 = 14.7601 \][/tex]
Therefore, the value of [tex]\(1.2^3 + (-1.9)^4\)[/tex] is [tex]\(14.7601\)[/tex].
4. Round to the nearest tenth:
To round [tex]\(14.7601\)[/tex] to the nearest tenth, we look at the hundredths place (the second digit after the decimal point):
- If the hundredths place is 5 or greater, we round up.
- If the hundredths place is less than 5, we round down.
In this case, the hundredths place is 6, so we round up:
[tex]\[ 14.7601 \approx 14.8 \][/tex]
Thus, the value of [tex]\(1.2^3 + (-1.9)^4\)[/tex] to the nearest tenth is [tex]\(14.8\)[/tex].
1. Evaluate [tex]\(1.2^3\)[/tex]:
We need to calculate [tex]\(1.2\)[/tex] raised to the power of [tex]\(3\)[/tex]:
[tex]\[ 1.2^3 = 1.2 \times 1.2 \times 1.2 = 1.728 \][/tex]
Therefore, [tex]\(1.2^3 = 1.728\)[/tex].
2. Evaluate [tex]\((-1.9)^4\)[/tex]:
Next, we calculate [tex]\((-1.9)\)[/tex] raised to the power of [tex]\(4\)[/tex]:
[tex]\[ (-1.9)^4 = (-1.9) \times (-1.9) \times (-1.9) \times (-1.9) = 13.0321 \][/tex]
While squaring [tex]\(-1.9\)[/tex] twice, we observe that multiplying a negative number an even number of times yields a positive result.
3. Add the two values together:
Sum the results from the previous steps:
[tex]\[ 1.728 + 13.0321 = 14.7601 \][/tex]
Therefore, the value of [tex]\(1.2^3 + (-1.9)^4\)[/tex] is [tex]\(14.7601\)[/tex].
4. Round to the nearest tenth:
To round [tex]\(14.7601\)[/tex] to the nearest tenth, we look at the hundredths place (the second digit after the decimal point):
- If the hundredths place is 5 or greater, we round up.
- If the hundredths place is less than 5, we round down.
In this case, the hundredths place is 6, so we round up:
[tex]\[ 14.7601 \approx 14.8 \][/tex]
Thus, the value of [tex]\(1.2^3 + (-1.9)^4\)[/tex] to the nearest tenth is [tex]\(14.8\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.