Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's start by addressing each part of the problem step-by-step.
### Part (a) Factor [tex]\( f(x) = x^3 - 4x^2 + 64x - 256 \)[/tex] given that [tex]\( 4 \)[/tex] is a zero.
Since [tex]\( 4 \)[/tex] is a known zero of the polynomial [tex]\( f(x) \)[/tex], [tex]\( (x - 4) \)[/tex] is a factor of [tex]\( f(x) \)[/tex].
We can use synthetic division to factor [tex]\( f(x) \)[/tex].
Step 1: Set up the synthetic division.
- Write down the coefficients of the polynomial: [tex]\( 1, -4, 64, -256 \)[/tex].
- Use the zero [tex]\( 4 \)[/tex].
Step 2: Perform the synthetic division.
[tex]\[ \begin{array}{r|rrrr} 4 & 1 & -4 & 64 & -256 \\ & & 4 & 0 & 256 \\ \hline & 1 & 0 & 64 & 0 \\ \end{array} \][/tex]
Here's how the synthetic division works:
1. Bring down the leading coefficient [tex]\( 1 \)[/tex] to the bottom row.
2. Multiply [tex]\( 4 \)[/tex] (the known zero) by the value just written below the line (1), giving [tex]\( 4 \)[/tex]. Write this result under the next coefficient (-4).
3. Add the column, [tex]\( -4 + 4 = 0 \)[/tex]. Write this result below the line.
4. Repeat the process: multiply [tex]\( 4 \)[/tex] by [tex]\( 0 \)[/tex], getting [tex]\( 0 \)[/tex]. Write this under the next coefficient (64).
5. Add the column, [tex]\( 64 + 0 = 64 \)[/tex]. Write this result below the line.
6. Finally, multiply [tex]\( 4 \)[/tex] by [tex]\( 64 \)[/tex], getting [tex]\( 256 \)[/tex]. Write this under the last coefficient (-256).
7. Add the column, [tex]\( -256 + 256 = 0 \)[/tex]. Write this result below the line.
The bottom row gives the coefficients of the quotient polynomial. Thus, [tex]\( f(x) = (x - 4)(x^2 + 64) \)[/tex].
### Part (b) Solve [tex]\( x^3 - 4x^2 + 64x - 256 = 0 \)[/tex].
Since part (a) tells us that [tex]\( f(x) = (x - 4)(x^2 + 64) \)[/tex], we can now solve the equation by setting each factor to zero.
1. Solve [tex]\( x - 4 = 0 \)[/tex]:
[tex]\[ x - 4 = 0 \implies x = 4 \][/tex]
2. Solve [tex]\( x^2 + 64 = 0 \)[/tex]:
[tex]\[ x^2 + 64 = 0 \implies x^2 = -64 \implies x = \pm \sqrt{-64} \implies x = \pm 8i \][/tex]
Therefore, the solutions to the equation [tex]\( x^3 - 4x^2 + 64x - 256 = 0 \)[/tex] are:
[tex]\[ x = 4, \quad x = 8i, \quad x = -8i \][/tex]
In summary:
(a) The factorized form of [tex]\( f(x) \)[/tex] is [tex]\( (x - 4)(x^2 + 64) \)[/tex].
(b) The solutions to the equation [tex]\( x^3 - 4x^2 + 64x - 256 = 0 \)[/tex] are [tex]\( x = 4 \)[/tex], [tex]\( x = 8i \)[/tex], and [tex]\( x = -8i \)[/tex].
### Part (a) Factor [tex]\( f(x) = x^3 - 4x^2 + 64x - 256 \)[/tex] given that [tex]\( 4 \)[/tex] is a zero.
Since [tex]\( 4 \)[/tex] is a known zero of the polynomial [tex]\( f(x) \)[/tex], [tex]\( (x - 4) \)[/tex] is a factor of [tex]\( f(x) \)[/tex].
We can use synthetic division to factor [tex]\( f(x) \)[/tex].
Step 1: Set up the synthetic division.
- Write down the coefficients of the polynomial: [tex]\( 1, -4, 64, -256 \)[/tex].
- Use the zero [tex]\( 4 \)[/tex].
Step 2: Perform the synthetic division.
[tex]\[ \begin{array}{r|rrrr} 4 & 1 & -4 & 64 & -256 \\ & & 4 & 0 & 256 \\ \hline & 1 & 0 & 64 & 0 \\ \end{array} \][/tex]
Here's how the synthetic division works:
1. Bring down the leading coefficient [tex]\( 1 \)[/tex] to the bottom row.
2. Multiply [tex]\( 4 \)[/tex] (the known zero) by the value just written below the line (1), giving [tex]\( 4 \)[/tex]. Write this result under the next coefficient (-4).
3. Add the column, [tex]\( -4 + 4 = 0 \)[/tex]. Write this result below the line.
4. Repeat the process: multiply [tex]\( 4 \)[/tex] by [tex]\( 0 \)[/tex], getting [tex]\( 0 \)[/tex]. Write this under the next coefficient (64).
5. Add the column, [tex]\( 64 + 0 = 64 \)[/tex]. Write this result below the line.
6. Finally, multiply [tex]\( 4 \)[/tex] by [tex]\( 64 \)[/tex], getting [tex]\( 256 \)[/tex]. Write this under the last coefficient (-256).
7. Add the column, [tex]\( -256 + 256 = 0 \)[/tex]. Write this result below the line.
The bottom row gives the coefficients of the quotient polynomial. Thus, [tex]\( f(x) = (x - 4)(x^2 + 64) \)[/tex].
### Part (b) Solve [tex]\( x^3 - 4x^2 + 64x - 256 = 0 \)[/tex].
Since part (a) tells us that [tex]\( f(x) = (x - 4)(x^2 + 64) \)[/tex], we can now solve the equation by setting each factor to zero.
1. Solve [tex]\( x - 4 = 0 \)[/tex]:
[tex]\[ x - 4 = 0 \implies x = 4 \][/tex]
2. Solve [tex]\( x^2 + 64 = 0 \)[/tex]:
[tex]\[ x^2 + 64 = 0 \implies x^2 = -64 \implies x = \pm \sqrt{-64} \implies x = \pm 8i \][/tex]
Therefore, the solutions to the equation [tex]\( x^3 - 4x^2 + 64x - 256 = 0 \)[/tex] are:
[tex]\[ x = 4, \quad x = 8i, \quad x = -8i \][/tex]
In summary:
(a) The factorized form of [tex]\( f(x) \)[/tex] is [tex]\( (x - 4)(x^2 + 64) \)[/tex].
(b) The solutions to the equation [tex]\( x^3 - 4x^2 + 64x - 256 = 0 \)[/tex] are [tex]\( x = 4 \)[/tex], [tex]\( x = 8i \)[/tex], and [tex]\( x = -8i \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.