Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's solve the equation [tex]\( 3^{2x + 1} = 9^{2x - 1} \)[/tex] step by step.
### Step 1: Rewrite the equation using the same base
Notice that [tex]\( 9 \)[/tex] can be written as [tex]\( 3^2 \)[/tex]. So we can rewrite the right-hand side of the equation using the same base of 3:
[tex]\[ 9^{2x - 1} = (3^2)^{2x - 1} \][/tex]
### Step 2: Apply the power rule
Using the power rule [tex]\((a^m)^n = a^{mn}\)[/tex], the right-hand side becomes:
[tex]\[ (3^2)^{2x - 1} = 3^{2(2x - 1)} \][/tex]
### Step 3: Simplify the exponent
Now simplify the exponent on the right-hand side:
[tex]\[ 3^{2(2x - 1)} = 3^{4x - 2} \][/tex]
### Step 4: Set the exponents equal
Since we now have the same base on both sides of the equation, we can set the exponents equal to each other:
[tex]\[ 2x + 1 = 4x - 2 \][/tex]
### Step 5: Solve for [tex]\( x \)[/tex]
Let's solve this equation for [tex]\( x \)[/tex]:
1. Subtract [tex]\( 2x \)[/tex] from both sides:
[tex]\[ 1 = 2x - 2 \][/tex]
2. Add 2 to both sides:
[tex]\[ 3 = 2x \][/tex]
3. Divide both sides by 2:
[tex]\[ x = \frac{3}{2} \][/tex]
### Conclusion
The solution to the equation [tex]\( 3^{2x + 1} = 9^{2x - 1} \)[/tex] is:
[tex]\[ x = \frac{3}{2} \][/tex]
And that's the detailed step-by-step solution!
### Step 1: Rewrite the equation using the same base
Notice that [tex]\( 9 \)[/tex] can be written as [tex]\( 3^2 \)[/tex]. So we can rewrite the right-hand side of the equation using the same base of 3:
[tex]\[ 9^{2x - 1} = (3^2)^{2x - 1} \][/tex]
### Step 2: Apply the power rule
Using the power rule [tex]\((a^m)^n = a^{mn}\)[/tex], the right-hand side becomes:
[tex]\[ (3^2)^{2x - 1} = 3^{2(2x - 1)} \][/tex]
### Step 3: Simplify the exponent
Now simplify the exponent on the right-hand side:
[tex]\[ 3^{2(2x - 1)} = 3^{4x - 2} \][/tex]
### Step 4: Set the exponents equal
Since we now have the same base on both sides of the equation, we can set the exponents equal to each other:
[tex]\[ 2x + 1 = 4x - 2 \][/tex]
### Step 5: Solve for [tex]\( x \)[/tex]
Let's solve this equation for [tex]\( x \)[/tex]:
1. Subtract [tex]\( 2x \)[/tex] from both sides:
[tex]\[ 1 = 2x - 2 \][/tex]
2. Add 2 to both sides:
[tex]\[ 3 = 2x \][/tex]
3. Divide both sides by 2:
[tex]\[ x = \frac{3}{2} \][/tex]
### Conclusion
The solution to the equation [tex]\( 3^{2x + 1} = 9^{2x - 1} \)[/tex] is:
[tex]\[ x = \frac{3}{2} \][/tex]
And that's the detailed step-by-step solution!
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.