Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Solve the inequality:

[tex]\[ \log_2(x+3) - \log_2(x) + \log_2(2x^2) \leq 3 \][/tex]

Sagot :

Sure, let's break down the given inequality and solve it step-by-step. The inequality we have is:

[tex]\[ \log_2(x + 3) - \log_2(x) + \log_2(2x^2) \leq 3 \][/tex]

First, use the properties of logarithms to simplify the expression.

Step 1: Combine the logarithmic terms.

We apply the properties of logarithms:
- [tex]\(\log_b(a) - \log_b(b) = \log_b\left(\frac{a}{b}\right)\)[/tex]
- [tex]\(\log_b(a) + \log_b(b) = \log_b(ab)\)[/tex]

Applying these properties:

[tex]\[ \log_2(x+3) - \log_2(x) = \log_2\left(\frac{x+3}{x}\right) \][/tex]

[tex]\[ \log_2(2x^2) = \log_2(2) + \log_2(x^2) = 1 + 2\log_2(x) \][/tex]

Combining all the logarithmic terms gives us:

[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 1 + 2\log_2(x) \leq 3 \][/tex]

Step 2: Further simplify the inequality.

Substitute back into the inequality:

[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 1 + 2\log_2(x) \leq 3 \][/tex]

Combine the constant terms:

[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 2\log_2(x) \leq 2 \][/tex]

Step 3: Combine the logarithms under a single logarithm term.

Use the property:

[tex]\(\log_b(a) + \log_b(b) = \log_b(ab)\)[/tex]

[tex]\[ \log_2\left(\frac{x+3}{x} \cdot x^2\right) \leq 2 \][/tex]

Simplify the inside of the logarithm:

[tex]\[ \log_2\left(\frac{x+3}{x} \cdot x^2\right) = \log_2(x^2 + 3x) \][/tex]

Step 4: Exponentiate both sides to remove the logarithm term.

We have:

[tex]\[ \log_2(x^2 + 3x) \leq 2 \][/tex]

By exponentiating both sides with base 2, we get:

[tex]\[ x^2 + 3x \leq 2^2 \][/tex]

Simplify the exponentiation:

[tex]\[ x^2 + 3x \leq 4 \][/tex]

Step 5: Solve the quadratic inequality.

Rewrite the inequality in standard quadratic form:

[tex]\[ x^2 + 3x - 4 \leq 0 \][/tex]

Factor the quadratic equation:

[tex]\[ (x + 4)(x - 1) \leq 0 \][/tex]

Step 6: Solve the factored inequality.

The critical points are [tex]\(x = -4\)[/tex] and [tex]\(x = 1\)[/tex]. These points divide the number line into three intervals: [tex]\( (-\infty, -4) \)[/tex], [tex]\( (-4, 1) \)[/tex], and [tex]\( (1, \infty) \)[/tex].

Determine where the quadratic expression is non-positive by testing values from each interval:

1. [tex]\( x < -4\)[/tex] (e.g., [tex]\( x = -5 \)[/tex]):
[tex]\[ (-5 + 4)(-5 - 1) = (-1)(-6) = 6 \quad (\text{positive}) \][/tex]

2. [tex]\(-4 \leq x \leq 1 \)[/tex]:
[tex]\[ (x + 4)(x - 1) \leq 0 \quad (\text{interval satisfies the inequality}) \][/tex]

3. [tex]\( x > 1 \)[/tex] (e.g., [tex]\( x = 2 \)[/tex]):
[tex]\[ (2 + 4)(2 - 1) = 6 \quad (\text{positive}) \][/tex]

Thus, the inequality [tex]\( (x + 4)(x - 1) \leq 0 \)[/tex] holds for:

[tex]\[-4 \leq x \leq 1\][/tex]

Step 7: Verify the domain constraints.

The original logarithmic expressions impose constraints:
[tex]\[ x + 3 > 0 \quad \text{and} \quad x > 0 \implies x > 0 \][/tex]

Thus, [tex]\(x > 0\)[/tex] adds an additional constraint, limiting the solution to:

[tex]\[0 < x \leq 1\][/tex]

Final Solution:

The solution to the inequality [tex]\(\log_2(x + 3) - \log_2(x) + \log_2(2x^2) \leq 3\)[/tex] is:

[tex]\[ x \in (0, 1] \][/tex]