Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's break down the given inequality and solve it step-by-step. The inequality we have is:
[tex]\[ \log_2(x + 3) - \log_2(x) + \log_2(2x^2) \leq 3 \][/tex]
First, use the properties of logarithms to simplify the expression.
Step 1: Combine the logarithmic terms.
We apply the properties of logarithms:
- [tex]\(\log_b(a) - \log_b(b) = \log_b\left(\frac{a}{b}\right)\)[/tex]
- [tex]\(\log_b(a) + \log_b(b) = \log_b(ab)\)[/tex]
Applying these properties:
[tex]\[ \log_2(x+3) - \log_2(x) = \log_2\left(\frac{x+3}{x}\right) \][/tex]
[tex]\[ \log_2(2x^2) = \log_2(2) + \log_2(x^2) = 1 + 2\log_2(x) \][/tex]
Combining all the logarithmic terms gives us:
[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 1 + 2\log_2(x) \leq 3 \][/tex]
Step 2: Further simplify the inequality.
Substitute back into the inequality:
[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 1 + 2\log_2(x) \leq 3 \][/tex]
Combine the constant terms:
[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 2\log_2(x) \leq 2 \][/tex]
Step 3: Combine the logarithms under a single logarithm term.
Use the property:
[tex]\(\log_b(a) + \log_b(b) = \log_b(ab)\)[/tex]
[tex]\[ \log_2\left(\frac{x+3}{x} \cdot x^2\right) \leq 2 \][/tex]
Simplify the inside of the logarithm:
[tex]\[ \log_2\left(\frac{x+3}{x} \cdot x^2\right) = \log_2(x^2 + 3x) \][/tex]
Step 4: Exponentiate both sides to remove the logarithm term.
We have:
[tex]\[ \log_2(x^2 + 3x) \leq 2 \][/tex]
By exponentiating both sides with base 2, we get:
[tex]\[ x^2 + 3x \leq 2^2 \][/tex]
Simplify the exponentiation:
[tex]\[ x^2 + 3x \leq 4 \][/tex]
Step 5: Solve the quadratic inequality.
Rewrite the inequality in standard quadratic form:
[tex]\[ x^2 + 3x - 4 \leq 0 \][/tex]
Factor the quadratic equation:
[tex]\[ (x + 4)(x - 1) \leq 0 \][/tex]
Step 6: Solve the factored inequality.
The critical points are [tex]\(x = -4\)[/tex] and [tex]\(x = 1\)[/tex]. These points divide the number line into three intervals: [tex]\( (-\infty, -4) \)[/tex], [tex]\( (-4, 1) \)[/tex], and [tex]\( (1, \infty) \)[/tex].
Determine where the quadratic expression is non-positive by testing values from each interval:
1. [tex]\( x < -4\)[/tex] (e.g., [tex]\( x = -5 \)[/tex]):
[tex]\[ (-5 + 4)(-5 - 1) = (-1)(-6) = 6 \quad (\text{positive}) \][/tex]
2. [tex]\(-4 \leq x \leq 1 \)[/tex]:
[tex]\[ (x + 4)(x - 1) \leq 0 \quad (\text{interval satisfies the inequality}) \][/tex]
3. [tex]\( x > 1 \)[/tex] (e.g., [tex]\( x = 2 \)[/tex]):
[tex]\[ (2 + 4)(2 - 1) = 6 \quad (\text{positive}) \][/tex]
Thus, the inequality [tex]\( (x + 4)(x - 1) \leq 0 \)[/tex] holds for:
[tex]\[-4 \leq x \leq 1\][/tex]
Step 7: Verify the domain constraints.
The original logarithmic expressions impose constraints:
[tex]\[ x + 3 > 0 \quad \text{and} \quad x > 0 \implies x > 0 \][/tex]
Thus, [tex]\(x > 0\)[/tex] adds an additional constraint, limiting the solution to:
[tex]\[0 < x \leq 1\][/tex]
Final Solution:
The solution to the inequality [tex]\(\log_2(x + 3) - \log_2(x) + \log_2(2x^2) \leq 3\)[/tex] is:
[tex]\[ x \in (0, 1] \][/tex]
[tex]\[ \log_2(x + 3) - \log_2(x) + \log_2(2x^2) \leq 3 \][/tex]
First, use the properties of logarithms to simplify the expression.
Step 1: Combine the logarithmic terms.
We apply the properties of logarithms:
- [tex]\(\log_b(a) - \log_b(b) = \log_b\left(\frac{a}{b}\right)\)[/tex]
- [tex]\(\log_b(a) + \log_b(b) = \log_b(ab)\)[/tex]
Applying these properties:
[tex]\[ \log_2(x+3) - \log_2(x) = \log_2\left(\frac{x+3}{x}\right) \][/tex]
[tex]\[ \log_2(2x^2) = \log_2(2) + \log_2(x^2) = 1 + 2\log_2(x) \][/tex]
Combining all the logarithmic terms gives us:
[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 1 + 2\log_2(x) \leq 3 \][/tex]
Step 2: Further simplify the inequality.
Substitute back into the inequality:
[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 1 + 2\log_2(x) \leq 3 \][/tex]
Combine the constant terms:
[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 2\log_2(x) \leq 2 \][/tex]
Step 3: Combine the logarithms under a single logarithm term.
Use the property:
[tex]\(\log_b(a) + \log_b(b) = \log_b(ab)\)[/tex]
[tex]\[ \log_2\left(\frac{x+3}{x} \cdot x^2\right) \leq 2 \][/tex]
Simplify the inside of the logarithm:
[tex]\[ \log_2\left(\frac{x+3}{x} \cdot x^2\right) = \log_2(x^2 + 3x) \][/tex]
Step 4: Exponentiate both sides to remove the logarithm term.
We have:
[tex]\[ \log_2(x^2 + 3x) \leq 2 \][/tex]
By exponentiating both sides with base 2, we get:
[tex]\[ x^2 + 3x \leq 2^2 \][/tex]
Simplify the exponentiation:
[tex]\[ x^2 + 3x \leq 4 \][/tex]
Step 5: Solve the quadratic inequality.
Rewrite the inequality in standard quadratic form:
[tex]\[ x^2 + 3x - 4 \leq 0 \][/tex]
Factor the quadratic equation:
[tex]\[ (x + 4)(x - 1) \leq 0 \][/tex]
Step 6: Solve the factored inequality.
The critical points are [tex]\(x = -4\)[/tex] and [tex]\(x = 1\)[/tex]. These points divide the number line into three intervals: [tex]\( (-\infty, -4) \)[/tex], [tex]\( (-4, 1) \)[/tex], and [tex]\( (1, \infty) \)[/tex].
Determine where the quadratic expression is non-positive by testing values from each interval:
1. [tex]\( x < -4\)[/tex] (e.g., [tex]\( x = -5 \)[/tex]):
[tex]\[ (-5 + 4)(-5 - 1) = (-1)(-6) = 6 \quad (\text{positive}) \][/tex]
2. [tex]\(-4 \leq x \leq 1 \)[/tex]:
[tex]\[ (x + 4)(x - 1) \leq 0 \quad (\text{interval satisfies the inequality}) \][/tex]
3. [tex]\( x > 1 \)[/tex] (e.g., [tex]\( x = 2 \)[/tex]):
[tex]\[ (2 + 4)(2 - 1) = 6 \quad (\text{positive}) \][/tex]
Thus, the inequality [tex]\( (x + 4)(x - 1) \leq 0 \)[/tex] holds for:
[tex]\[-4 \leq x \leq 1\][/tex]
Step 7: Verify the domain constraints.
The original logarithmic expressions impose constraints:
[tex]\[ x + 3 > 0 \quad \text{and} \quad x > 0 \implies x > 0 \][/tex]
Thus, [tex]\(x > 0\)[/tex] adds an additional constraint, limiting the solution to:
[tex]\[0 < x \leq 1\][/tex]
Final Solution:
The solution to the inequality [tex]\(\log_2(x + 3) - \log_2(x) + \log_2(2x^2) \leq 3\)[/tex] is:
[tex]\[ x \in (0, 1] \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.