Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Solve the inequality:

[tex]\[ \log_2(x+3) - \log_2(x) + \log_2(2x^2) \leq 3 \][/tex]

Sagot :

Sure, let's break down the given inequality and solve it step-by-step. The inequality we have is:

[tex]\[ \log_2(x + 3) - \log_2(x) + \log_2(2x^2) \leq 3 \][/tex]

First, use the properties of logarithms to simplify the expression.

Step 1: Combine the logarithmic terms.

We apply the properties of logarithms:
- [tex]\(\log_b(a) - \log_b(b) = \log_b\left(\frac{a}{b}\right)\)[/tex]
- [tex]\(\log_b(a) + \log_b(b) = \log_b(ab)\)[/tex]

Applying these properties:

[tex]\[ \log_2(x+3) - \log_2(x) = \log_2\left(\frac{x+3}{x}\right) \][/tex]

[tex]\[ \log_2(2x^2) = \log_2(2) + \log_2(x^2) = 1 + 2\log_2(x) \][/tex]

Combining all the logarithmic terms gives us:

[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 1 + 2\log_2(x) \leq 3 \][/tex]

Step 2: Further simplify the inequality.

Substitute back into the inequality:

[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 1 + 2\log_2(x) \leq 3 \][/tex]

Combine the constant terms:

[tex]\[ \log_2\left(\frac{x+3}{x}\right) + 2\log_2(x) \leq 2 \][/tex]

Step 3: Combine the logarithms under a single logarithm term.

Use the property:

[tex]\(\log_b(a) + \log_b(b) = \log_b(ab)\)[/tex]

[tex]\[ \log_2\left(\frac{x+3}{x} \cdot x^2\right) \leq 2 \][/tex]

Simplify the inside of the logarithm:

[tex]\[ \log_2\left(\frac{x+3}{x} \cdot x^2\right) = \log_2(x^2 + 3x) \][/tex]

Step 4: Exponentiate both sides to remove the logarithm term.

We have:

[tex]\[ \log_2(x^2 + 3x) \leq 2 \][/tex]

By exponentiating both sides with base 2, we get:

[tex]\[ x^2 + 3x \leq 2^2 \][/tex]

Simplify the exponentiation:

[tex]\[ x^2 + 3x \leq 4 \][/tex]

Step 5: Solve the quadratic inequality.

Rewrite the inequality in standard quadratic form:

[tex]\[ x^2 + 3x - 4 \leq 0 \][/tex]

Factor the quadratic equation:

[tex]\[ (x + 4)(x - 1) \leq 0 \][/tex]

Step 6: Solve the factored inequality.

The critical points are [tex]\(x = -4\)[/tex] and [tex]\(x = 1\)[/tex]. These points divide the number line into three intervals: [tex]\( (-\infty, -4) \)[/tex], [tex]\( (-4, 1) \)[/tex], and [tex]\( (1, \infty) \)[/tex].

Determine where the quadratic expression is non-positive by testing values from each interval:

1. [tex]\( x < -4\)[/tex] (e.g., [tex]\( x = -5 \)[/tex]):
[tex]\[ (-5 + 4)(-5 - 1) = (-1)(-6) = 6 \quad (\text{positive}) \][/tex]

2. [tex]\(-4 \leq x \leq 1 \)[/tex]:
[tex]\[ (x + 4)(x - 1) \leq 0 \quad (\text{interval satisfies the inequality}) \][/tex]

3. [tex]\( x > 1 \)[/tex] (e.g., [tex]\( x = 2 \)[/tex]):
[tex]\[ (2 + 4)(2 - 1) = 6 \quad (\text{positive}) \][/tex]

Thus, the inequality [tex]\( (x + 4)(x - 1) \leq 0 \)[/tex] holds for:

[tex]\[-4 \leq x \leq 1\][/tex]

Step 7: Verify the domain constraints.

The original logarithmic expressions impose constraints:
[tex]\[ x + 3 > 0 \quad \text{and} \quad x > 0 \implies x > 0 \][/tex]

Thus, [tex]\(x > 0\)[/tex] adds an additional constraint, limiting the solution to:

[tex]\[0 < x \leq 1\][/tex]

Final Solution:

The solution to the inequality [tex]\(\log_2(x + 3) - \log_2(x) + \log_2(2x^2) \leq 3\)[/tex] is:

[tex]\[ x \in (0, 1] \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.