Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

What is the slope of the line that contains the points [tex]\((-2, 2)\)[/tex] and [tex]\((3, 4)\)[/tex]?

A. [tex]\(-\frac{5}{2}\)[/tex]

B. [tex]\(\frac{5}{2}\)[/tex]

C. [tex]\(-\frac{2}{5}\)[/tex]

D. [tex]\(\frac{2}{5}\)[/tex]


Sagot :

To find the slope of the line that passes through the points [tex]\((-2, 2)\)[/tex] and [tex]\( (3, 4)\)[/tex], we can use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the given points. In this case, [tex]\((x_1, y_1) = (-2, 2)\)[/tex] and [tex]\((x_2, y_2) = (3, 4)\)[/tex]. Substituting these values into the formula:

[tex]\[ m = \frac{4 - 2}{3 - (-2)} \][/tex]

First, simplify the numerator and the denominator:

[tex]\[ m = \frac{2}{3 + 2} \][/tex]
[tex]\[ m = \frac{2}{5} \][/tex]

Therefore, the slope of the line containing the points [tex]\((-2, 2)\)[/tex] and [tex]\((3, 4)\)[/tex] is

[tex]\[ \boxed{\frac{2}{5}} \][/tex]

So the correct answer is D. [tex]\( \frac{2}{5} \)[/tex].