Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's find the cofactor of the element [tex]\(a_{32}\)[/tex] in the given matrix [tex]\(\Delta\)[/tex].
Given the matrix
[tex]\[ \Delta = \begin{vmatrix} 1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2 \end{vmatrix}, \][/tex]
we need to determine the cofactor of the entry at the 3rd row and 2nd column, which is [tex]\(a_{32} = 5\)[/tex].
### Step 1: Find Minor of [tex]\(a_{32}\)[/tex]
To find the minor of [tex]\(a_{32}\)[/tex], we need to remove the 3rd row and 2nd column from the original matrix. The remaining 2x2 matrix is:
[tex]\[ \begin{vmatrix} 1 & -2 \\ 4 & 6 \end{vmatrix}. \][/tex]
### Step 2: Calculate Determinant of the Minor
Next, find the determinant of this 2x2 matrix:
[tex]\[ \text{Det} = (1 \cdot 6) - (-2 \cdot 4) = 6 - (-8) = 6 + 8 = 14. \][/tex]
So, the minor of [tex]\(a_{32}\)[/tex] is [tex]\(14\)[/tex].
### Step 3: Calculate Cofactor of [tex]\(a_{32}\)[/tex]
The cofactor is given by multiplying the minor by [tex]\((-1)^{i+j}\)[/tex], where [tex]\(i\)[/tex] and [tex]\(j\)[/tex] are the row and column indices of the element. Here, [tex]\(i = 3\)[/tex] and [tex]\(j = 2\)[/tex]:
[tex]\[ \text{Cofactor of } a_{32} = (-1)^{3+2} \times \text{Minor of } a_{32}. \][/tex]
Calculate the exponent:
[tex]\[ (-1)^{3+2} = (-1)^5 = -1. \][/tex]
Thus, the cofactor of [tex]\(a_{32}\)[/tex] is:
[tex]\[ \text{Cofactor of } a_{32} = -1 \times 14 = -14. \][/tex]
### Conclusion
The cofactor of [tex]\(a_{32}\)[/tex] in the matrix [tex]\(\Delta\)[/tex] is [tex]\(-14\)[/tex].
Given the matrix
[tex]\[ \Delta = \begin{vmatrix} 1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2 \end{vmatrix}, \][/tex]
we need to determine the cofactor of the entry at the 3rd row and 2nd column, which is [tex]\(a_{32} = 5\)[/tex].
### Step 1: Find Minor of [tex]\(a_{32}\)[/tex]
To find the minor of [tex]\(a_{32}\)[/tex], we need to remove the 3rd row and 2nd column from the original matrix. The remaining 2x2 matrix is:
[tex]\[ \begin{vmatrix} 1 & -2 \\ 4 & 6 \end{vmatrix}. \][/tex]
### Step 2: Calculate Determinant of the Minor
Next, find the determinant of this 2x2 matrix:
[tex]\[ \text{Det} = (1 \cdot 6) - (-2 \cdot 4) = 6 - (-8) = 6 + 8 = 14. \][/tex]
So, the minor of [tex]\(a_{32}\)[/tex] is [tex]\(14\)[/tex].
### Step 3: Calculate Cofactor of [tex]\(a_{32}\)[/tex]
The cofactor is given by multiplying the minor by [tex]\((-1)^{i+j}\)[/tex], where [tex]\(i\)[/tex] and [tex]\(j\)[/tex] are the row and column indices of the element. Here, [tex]\(i = 3\)[/tex] and [tex]\(j = 2\)[/tex]:
[tex]\[ \text{Cofactor of } a_{32} = (-1)^{3+2} \times \text{Minor of } a_{32}. \][/tex]
Calculate the exponent:
[tex]\[ (-1)^{3+2} = (-1)^5 = -1. \][/tex]
Thus, the cofactor of [tex]\(a_{32}\)[/tex] is:
[tex]\[ \text{Cofactor of } a_{32} = -1 \times 14 = -14. \][/tex]
### Conclusion
The cofactor of [tex]\(a_{32}\)[/tex] in the matrix [tex]\(\Delta\)[/tex] is [tex]\(-14\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.