Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem where the sum of an angle and the complementary angle of [tex]\(15^\circ\)[/tex] is [tex]\(100^\circ\)[/tex], let's break it down step-by-step:
1. Understanding complementary angles:
- Complementary angles are two angles whose measures add up to [tex]\(90^\circ\)[/tex].
- Therefore, if one of the angles is [tex]\(15^\circ\)[/tex], the complementary angle would be [tex]\(90^\circ - 15^\circ\)[/tex].
2. Setting up the problem:
- Let [tex]\(x\)[/tex] be the unknown angle.
- The complement of angle [tex]\(x\)[/tex] would be [tex]\(90^\circ - x\)[/tex] because they must add up to [tex]\(90^\circ\)[/tex] (as they are complementary).
- According to the problem, the sum of angle [tex]\(x\)[/tex] and the complementary angle of [tex]\(15^\circ\)[/tex] is [tex]\(100^\circ\)[/tex].
3. Formulate the equation:
- The given complementary angle is [tex]\(15^\circ\)[/tex].
- So, we need to find the angle [tex]\(x\)[/tex] such that the sum of [tex]\(x\)[/tex] and [tex]\(90^\circ - x\)[/tex] plus additional [tex]\(15^\circ\)[/tex] equals [tex]\(100^\circ\)[/tex].
4. Solving the equation:
- Combine the given information into an equation:
[tex]\[ x + (90^\circ - x) + 15^\circ = 100^\circ \][/tex]
- Simplify the equation by combining like terms:
[tex]\[ 90^\circ + 15^\circ = 100^\circ \][/tex]
- Therefore, [tex]\(x + 15^\circ = 85^\circ\)[/tex]
[tex]\[ x + 15^\circ = 85^\circ \][/tex]
- Solve for [tex]\(x\)[/tex]:
[tex]\[ x = 85^\circ \][/tex]
5. Determine the complementary angle:
- If [tex]\(x = 85^\circ\)[/tex], then the complementary angle is:
[tex]\[ 90^\circ - x = 90^\circ - 85^\circ = 5^\circ \][/tex]
Thus, the angle [tex]\(x\)[/tex] is [tex]\(85^\circ\)[/tex], and its complementary angle is [tex]\(5^\circ\)[/tex].
1. Understanding complementary angles:
- Complementary angles are two angles whose measures add up to [tex]\(90^\circ\)[/tex].
- Therefore, if one of the angles is [tex]\(15^\circ\)[/tex], the complementary angle would be [tex]\(90^\circ - 15^\circ\)[/tex].
2. Setting up the problem:
- Let [tex]\(x\)[/tex] be the unknown angle.
- The complement of angle [tex]\(x\)[/tex] would be [tex]\(90^\circ - x\)[/tex] because they must add up to [tex]\(90^\circ\)[/tex] (as they are complementary).
- According to the problem, the sum of angle [tex]\(x\)[/tex] and the complementary angle of [tex]\(15^\circ\)[/tex] is [tex]\(100^\circ\)[/tex].
3. Formulate the equation:
- The given complementary angle is [tex]\(15^\circ\)[/tex].
- So, we need to find the angle [tex]\(x\)[/tex] such that the sum of [tex]\(x\)[/tex] and [tex]\(90^\circ - x\)[/tex] plus additional [tex]\(15^\circ\)[/tex] equals [tex]\(100^\circ\)[/tex].
4. Solving the equation:
- Combine the given information into an equation:
[tex]\[ x + (90^\circ - x) + 15^\circ = 100^\circ \][/tex]
- Simplify the equation by combining like terms:
[tex]\[ 90^\circ + 15^\circ = 100^\circ \][/tex]
- Therefore, [tex]\(x + 15^\circ = 85^\circ\)[/tex]
[tex]\[ x + 15^\circ = 85^\circ \][/tex]
- Solve for [tex]\(x\)[/tex]:
[tex]\[ x = 85^\circ \][/tex]
5. Determine the complementary angle:
- If [tex]\(x = 85^\circ\)[/tex], then the complementary angle is:
[tex]\[ 90^\circ - x = 90^\circ - 85^\circ = 5^\circ \][/tex]
Thus, the angle [tex]\(x\)[/tex] is [tex]\(85^\circ\)[/tex], and its complementary angle is [tex]\(5^\circ\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.