Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's go through the steps to solve this problem:
1. Understand the Problem:
- We have a circle with radius [tex]\(3\)[/tex] meters.
- The central angle [tex]\(XYZ\)[/tex] is [tex]\(70^\circ\)[/tex].
- We need to find the length of the minor arc [tex]\(XZ\)[/tex] and round it to the nearest tenth of a meter.
2. Convert the Central Angle to Radians:
- The formula to convert degrees to radians is: [tex]\(\text{radians} = \text{degrees} \times \frac{\pi}{180}\)[/tex].
- Plug in the central angle in degrees:
[tex]\[ 70^\circ \times \frac{\pi}{180} = \frac{70\pi}{180} = \frac{7\pi}{18} \approx 1.2217 \text{ radians} (approximated to 4 decimal places) \][/tex]
3. Calculate the Arc Length:
- The formula to calculate the arc length [tex]\(L\)[/tex] of a circle is: [tex]\(L = r \cdot \theta\)[/tex], where [tex]\(r\)[/tex] is the radius and [tex]\(\theta\)[/tex] is the central angle in radians.
- Using the radius [tex]\(r = 3\)[/tex] meters and [tex]\(\theta \approx 1.2217\)[/tex] radians:
[tex]\[ L = 3 \times 1.2217 \approx 3.6652 \text{ meters} (approximated to 4 decimal places) \][/tex]
4. Round the Arc Length:
- Round the arc length to the nearest tenth of a meter:
[tex]\[ 3.6652 \approx 3.7 \text{ meters} \][/tex]
5. Conclusion:
- The approximate length of minor arc [tex]\(XZ\)[/tex] is [tex]\(3.7\)[/tex] meters.
So, the correct answer is:
[tex]\[ \boxed{3.7 \text{ meters}} \][/tex]
1. Understand the Problem:
- We have a circle with radius [tex]\(3\)[/tex] meters.
- The central angle [tex]\(XYZ\)[/tex] is [tex]\(70^\circ\)[/tex].
- We need to find the length of the minor arc [tex]\(XZ\)[/tex] and round it to the nearest tenth of a meter.
2. Convert the Central Angle to Radians:
- The formula to convert degrees to radians is: [tex]\(\text{radians} = \text{degrees} \times \frac{\pi}{180}\)[/tex].
- Plug in the central angle in degrees:
[tex]\[ 70^\circ \times \frac{\pi}{180} = \frac{70\pi}{180} = \frac{7\pi}{18} \approx 1.2217 \text{ radians} (approximated to 4 decimal places) \][/tex]
3. Calculate the Arc Length:
- The formula to calculate the arc length [tex]\(L\)[/tex] of a circle is: [tex]\(L = r \cdot \theta\)[/tex], where [tex]\(r\)[/tex] is the radius and [tex]\(\theta\)[/tex] is the central angle in radians.
- Using the radius [tex]\(r = 3\)[/tex] meters and [tex]\(\theta \approx 1.2217\)[/tex] radians:
[tex]\[ L = 3 \times 1.2217 \approx 3.6652 \text{ meters} (approximated to 4 decimal places) \][/tex]
4. Round the Arc Length:
- Round the arc length to the nearest tenth of a meter:
[tex]\[ 3.6652 \approx 3.7 \text{ meters} \][/tex]
5. Conclusion:
- The approximate length of minor arc [tex]\(XZ\)[/tex] is [tex]\(3.7\)[/tex] meters.
So, the correct answer is:
[tex]\[ \boxed{3.7 \text{ meters}} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.