Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the completely factored form of [tex]\(x^3 - 64x\)[/tex], we follow these steps:
1. Identify Common Factor: Notice that [tex]\(x\)[/tex] is a common factor in each term of the expression [tex]\(x^3 - 64x\)[/tex]. We can factor out [tex]\(x\)[/tex] from the whole expression:
[tex]\[ x^3 - 64x = x(x^2 - 64) \][/tex]
2. Factor the Quadratic Expression: Next, we need to factor [tex]\(x^2 - 64\)[/tex]. Recognize that [tex]\(x^2 - 64\)[/tex] is a difference of squares. Recall that the difference of squares can be factored using the formula:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
Here, we have [tex]\(a = x\)[/tex] and [tex]\(b = 8\)[/tex], so:
[tex]\[ x^2 - 64 = x^2 - 8^2 = (x - 8)(x + 8) \][/tex]
3. Combine the Factors: Substitute back the factors of [tex]\(x^2 - 64\)[/tex] into the expression we factored out previously:
[tex]\[ x(x^2 - 64) = x(x - 8)(x + 8) \][/tex]
Therefore, the completely factored form of [tex]\(x^3 - 64x\)[/tex] is:
[tex]\[ x(x - 8)(x + 8) \][/tex]
Among the given options, the correct answer is:
[tex]\[ x(x-8)(x+8) \][/tex]
1. Identify Common Factor: Notice that [tex]\(x\)[/tex] is a common factor in each term of the expression [tex]\(x^3 - 64x\)[/tex]. We can factor out [tex]\(x\)[/tex] from the whole expression:
[tex]\[ x^3 - 64x = x(x^2 - 64) \][/tex]
2. Factor the Quadratic Expression: Next, we need to factor [tex]\(x^2 - 64\)[/tex]. Recognize that [tex]\(x^2 - 64\)[/tex] is a difference of squares. Recall that the difference of squares can be factored using the formula:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
Here, we have [tex]\(a = x\)[/tex] and [tex]\(b = 8\)[/tex], so:
[tex]\[ x^2 - 64 = x^2 - 8^2 = (x - 8)(x + 8) \][/tex]
3. Combine the Factors: Substitute back the factors of [tex]\(x^2 - 64\)[/tex] into the expression we factored out previously:
[tex]\[ x(x^2 - 64) = x(x - 8)(x + 8) \][/tex]
Therefore, the completely factored form of [tex]\(x^3 - 64x\)[/tex] is:
[tex]\[ x(x - 8)(x + 8) \][/tex]
Among the given options, the correct answer is:
[tex]\[ x(x-8)(x+8) \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.