Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the gravitational force you would experience on the surface of Mercury, we need to use Newton's law of gravitation.
The formula for calculating the gravitational force [tex]\( F_{\text{gravity}} \)[/tex] is:
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the object (your mass), [tex]\( 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Mercury, [tex]\( 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the radius of Mercury, [tex]\( 2.44 \times 10^6 \, \text{m} \)[/tex]
Let's put these values into the formula step-by-step:
1. Identify the values:
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 = 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 = 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r = 2.44 \times 10^6 \, \text{m} \)[/tex]
2. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (2.44 \times 10^6 \, \text{m})^2 = 5.9536 \times 10^{12} \, \text{m}^2 \][/tex]
3. Plug the values into the formula:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11}) \cdot (68.05) \cdot (3.30 \times 10^{23})}{5.9536 \times 10^{12}} \][/tex]
4. Calculate the numerator:
[tex]\[ 6.67 \times 10^{-11} \cdot 68.05 \cdot 3.30 \times 10^{23} = 1.4982835 \times 10^{14} \][/tex]
5. Calculate the force:
[tex]\[ F_{\text{gravity}} = \frac{1.4982835 \times 10^{14}}{5.9536 \times 10^{12}} = 251.58703137597416 \, \text{N} \][/tex]
Thus, the gravitational force you would experience on the surface of Mercury is approximately [tex]\( 251.59 \, \text{N} \)[/tex].
The formula for calculating the gravitational force [tex]\( F_{\text{gravity}} \)[/tex] is:
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the object (your mass), [tex]\( 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Mercury, [tex]\( 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the radius of Mercury, [tex]\( 2.44 \times 10^6 \, \text{m} \)[/tex]
Let's put these values into the formula step-by-step:
1. Identify the values:
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 = 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 = 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r = 2.44 \times 10^6 \, \text{m} \)[/tex]
2. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (2.44 \times 10^6 \, \text{m})^2 = 5.9536 \times 10^{12} \, \text{m}^2 \][/tex]
3. Plug the values into the formula:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11}) \cdot (68.05) \cdot (3.30 \times 10^{23})}{5.9536 \times 10^{12}} \][/tex]
4. Calculate the numerator:
[tex]\[ 6.67 \times 10^{-11} \cdot 68.05 \cdot 3.30 \times 10^{23} = 1.4982835 \times 10^{14} \][/tex]
5. Calculate the force:
[tex]\[ F_{\text{gravity}} = \frac{1.4982835 \times 10^{14}}{5.9536 \times 10^{12}} = 251.58703137597416 \, \text{N} \][/tex]
Thus, the gravitational force you would experience on the surface of Mercury is approximately [tex]\( 251.59 \, \text{N} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.