Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The table shows data for four planetary bodies. If your mass is [tex]68.05 \, \text{kg}[/tex], how much gravitational force would you experience on the surface of Mercury?

Newton's law of gravitation is [tex]F_{\text{gravity}} = \frac{G m_1 m_2}{r^2}[/tex]. The gravitational constant [tex]G[/tex] is [tex]6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2[/tex]. (For the purposes of calculating the gravitational force between a planet and an object on its surface, the distance [tex]r[/tex] is the radius of the planet.)

\begin{tabular}{|l|l|l|}
\hline
Planetary body & Mass (kg) & Radius (m) \\
\hline
Earth & [tex]5.97 \times 10^{24}[/tex] & [tex]6.37 \times 10^6[/tex] \\
\hline
Moon & [tex]7.35 \times 10^{22}[/tex] & [tex]1.74 \times 10^6[/tex] \\
\hline
Mars & [tex]6.42 \times 10^{23}[/tex] & [tex]3.39 \times 10^6[/tex] \\
\hline
Mercury & [tex]3.30 \times 10^{23}[/tex] & [tex]2.44 \times 10^6[/tex] \\
\hline
\end{tabular}

A. [tex]110 \, \text{N}[/tex]


Sagot :

To determine the gravitational force you would experience on the surface of Mercury, we need to use Newton's law of gravitation.

The formula for calculating the gravitational force [tex]\( F_{\text{gravity}} \)[/tex] is:
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]

Where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the object (your mass), [tex]\( 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Mercury, [tex]\( 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the radius of Mercury, [tex]\( 2.44 \times 10^6 \, \text{m} \)[/tex]

Let's put these values into the formula step-by-step:

1. Identify the values:
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 = 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 = 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r = 2.44 \times 10^6 \, \text{m} \)[/tex]

2. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (2.44 \times 10^6 \, \text{m})^2 = 5.9536 \times 10^{12} \, \text{m}^2 \][/tex]

3. Plug the values into the formula:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11}) \cdot (68.05) \cdot (3.30 \times 10^{23})}{5.9536 \times 10^{12}} \][/tex]

4. Calculate the numerator:
[tex]\[ 6.67 \times 10^{-11} \cdot 68.05 \cdot 3.30 \times 10^{23} = 1.4982835 \times 10^{14} \][/tex]

5. Calculate the force:
[tex]\[ F_{\text{gravity}} = \frac{1.4982835 \times 10^{14}}{5.9536 \times 10^{12}} = 251.58703137597416 \, \text{N} \][/tex]

Thus, the gravitational force you would experience on the surface of Mercury is approximately [tex]\( 251.59 \, \text{N} \)[/tex].