Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the gravitational force you would experience on the surface of Mercury, we need to use Newton's law of gravitation.
The formula for calculating the gravitational force [tex]\( F_{\text{gravity}} \)[/tex] is:
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the object (your mass), [tex]\( 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Mercury, [tex]\( 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the radius of Mercury, [tex]\( 2.44 \times 10^6 \, \text{m} \)[/tex]
Let's put these values into the formula step-by-step:
1. Identify the values:
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 = 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 = 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r = 2.44 \times 10^6 \, \text{m} \)[/tex]
2. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (2.44 \times 10^6 \, \text{m})^2 = 5.9536 \times 10^{12} \, \text{m}^2 \][/tex]
3. Plug the values into the formula:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11}) \cdot (68.05) \cdot (3.30 \times 10^{23})}{5.9536 \times 10^{12}} \][/tex]
4. Calculate the numerator:
[tex]\[ 6.67 \times 10^{-11} \cdot 68.05 \cdot 3.30 \times 10^{23} = 1.4982835 \times 10^{14} \][/tex]
5. Calculate the force:
[tex]\[ F_{\text{gravity}} = \frac{1.4982835 \times 10^{14}}{5.9536 \times 10^{12}} = 251.58703137597416 \, \text{N} \][/tex]
Thus, the gravitational force you would experience on the surface of Mercury is approximately [tex]\( 251.59 \, \text{N} \)[/tex].
The formula for calculating the gravitational force [tex]\( F_{\text{gravity}} \)[/tex] is:
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the object (your mass), [tex]\( 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Mercury, [tex]\( 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the radius of Mercury, [tex]\( 2.44 \times 10^6 \, \text{m} \)[/tex]
Let's put these values into the formula step-by-step:
1. Identify the values:
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 = 68.05 \, \text{kg} \)[/tex]
- [tex]\( m_2 = 3.30 \times 10^{23} \, \text{kg} \)[/tex]
- [tex]\( r = 2.44 \times 10^6 \, \text{m} \)[/tex]
2. Calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (2.44 \times 10^6 \, \text{m})^2 = 5.9536 \times 10^{12} \, \text{m}^2 \][/tex]
3. Plug the values into the formula:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11}) \cdot (68.05) \cdot (3.30 \times 10^{23})}{5.9536 \times 10^{12}} \][/tex]
4. Calculate the numerator:
[tex]\[ 6.67 \times 10^{-11} \cdot 68.05 \cdot 3.30 \times 10^{23} = 1.4982835 \times 10^{14} \][/tex]
5. Calculate the force:
[tex]\[ F_{\text{gravity}} = \frac{1.4982835 \times 10^{14}}{5.9536 \times 10^{12}} = 251.58703137597416 \, \text{N} \][/tex]
Thus, the gravitational force you would experience on the surface of Mercury is approximately [tex]\( 251.59 \, \text{N} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.