Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve for the height [tex]\( h \)[/tex] in the given problem involving a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle:
1. Understanding the Properties of a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] Triangle:
- In a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, the two legs are congruent, meaning they have the same length.
- The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg.
2. Given Information:
- One leg of the triangle measures 6.5 feet.
3. Application of the Theorem:
- Since the smaller legs are congruent and each measures 6.5 feet,
4. Calculate the Hypotenuse [tex]\( h \)[/tex]:
- The hypotenuse (height of the wall in this context) is calculated as:
[tex]\[ h = 6.5 \times \sqrt{2} \][/tex]
After calculating this multiplication, we find:
[tex]\[ h \approx 9.19238815542512 \, \text{feet} \][/tex]
So the height of the wall, represented by the hypotenuse in this specific [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, is approximately [tex]\( 9.19238815542512 \)[/tex] feet. Therefore, none of the provided options ([tex]\( 6.5 \)[/tex] ft, [tex]\( 6.5\sqrt{2} \)[/tex] ft, [tex]\( 13 \)[/tex] ft, [tex]\( 13\sqrt{2} \)[/tex] ft) exactly match this height, but you may refer to the idea that [tex]\( 6.5 \sqrt{2} \)[/tex] ft is the closest representation of the calculation involved.
1. Understanding the Properties of a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] Triangle:
- In a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, the two legs are congruent, meaning they have the same length.
- The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg.
2. Given Information:
- One leg of the triangle measures 6.5 feet.
3. Application of the Theorem:
- Since the smaller legs are congruent and each measures 6.5 feet,
4. Calculate the Hypotenuse [tex]\( h \)[/tex]:
- The hypotenuse (height of the wall in this context) is calculated as:
[tex]\[ h = 6.5 \times \sqrt{2} \][/tex]
After calculating this multiplication, we find:
[tex]\[ h \approx 9.19238815542512 \, \text{feet} \][/tex]
So the height of the wall, represented by the hypotenuse in this specific [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, is approximately [tex]\( 9.19238815542512 \)[/tex] feet. Therefore, none of the provided options ([tex]\( 6.5 \)[/tex] ft, [tex]\( 6.5\sqrt{2} \)[/tex] ft, [tex]\( 13 \)[/tex] ft, [tex]\( 13\sqrt{2} \)[/tex] ft) exactly match this height, but you may refer to the idea that [tex]\( 6.5 \sqrt{2} \)[/tex] ft is the closest representation of the calculation involved.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.