Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for the height [tex]\( h \)[/tex] in the given problem involving a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle:
1. Understanding the Properties of a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] Triangle:
- In a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, the two legs are congruent, meaning they have the same length.
- The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg.
2. Given Information:
- One leg of the triangle measures 6.5 feet.
3. Application of the Theorem:
- Since the smaller legs are congruent and each measures 6.5 feet,
4. Calculate the Hypotenuse [tex]\( h \)[/tex]:
- The hypotenuse (height of the wall in this context) is calculated as:
[tex]\[ h = 6.5 \times \sqrt{2} \][/tex]
After calculating this multiplication, we find:
[tex]\[ h \approx 9.19238815542512 \, \text{feet} \][/tex]
So the height of the wall, represented by the hypotenuse in this specific [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, is approximately [tex]\( 9.19238815542512 \)[/tex] feet. Therefore, none of the provided options ([tex]\( 6.5 \)[/tex] ft, [tex]\( 6.5\sqrt{2} \)[/tex] ft, [tex]\( 13 \)[/tex] ft, [tex]\( 13\sqrt{2} \)[/tex] ft) exactly match this height, but you may refer to the idea that [tex]\( 6.5 \sqrt{2} \)[/tex] ft is the closest representation of the calculation involved.
1. Understanding the Properties of a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] Triangle:
- In a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, the two legs are congruent, meaning they have the same length.
- The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg.
2. Given Information:
- One leg of the triangle measures 6.5 feet.
3. Application of the Theorem:
- Since the smaller legs are congruent and each measures 6.5 feet,
4. Calculate the Hypotenuse [tex]\( h \)[/tex]:
- The hypotenuse (height of the wall in this context) is calculated as:
[tex]\[ h = 6.5 \times \sqrt{2} \][/tex]
After calculating this multiplication, we find:
[tex]\[ h \approx 9.19238815542512 \, \text{feet} \][/tex]
So the height of the wall, represented by the hypotenuse in this specific [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, is approximately [tex]\( 9.19238815542512 \)[/tex] feet. Therefore, none of the provided options ([tex]\( 6.5 \)[/tex] ft, [tex]\( 6.5\sqrt{2} \)[/tex] ft, [tex]\( 13 \)[/tex] ft, [tex]\( 13\sqrt{2} \)[/tex] ft) exactly match this height, but you may refer to the idea that [tex]\( 6.5 \sqrt{2} \)[/tex] ft is the closest representation of the calculation involved.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.