Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the expression equivalent to [tex]\( x^{\frac{1}{3}} \)[/tex], let's go through the given options one by one in detail:
1. Option A: [tex]\( \sqrt[3]{x} \)[/tex]
The notation [tex]\( \sqrt[3]{x} \)[/tex] represents the cube root of [tex]\( x \)[/tex]. By definition, taking the cube root of [tex]\( x \)[/tex] is the same as raising [tex]\( x \)[/tex] to the power of [tex]\( \frac{1}{3} \)[/tex]. Therefore,
[tex]\[ \sqrt[3]{x} = x^{\frac{1}{3}} \][/tex]
This matches the given expression exactly.
2. Option B: [tex]\( \frac{1}{x^3} \)[/tex]
The expression [tex]\( \frac{1}{x^3} \)[/tex] represents the reciprocal of [tex]\( x \)[/tex] raised to the power of 3. Simplified in exponential form, it can be written as:
[tex]\[ \frac{1}{x^3} = x^{-3} \][/tex]
This is clearly different from [tex]\( x^{\frac{1}{3}} \)[/tex] since [tex]\( -3 \ne \frac{1}{3} \)[/tex].
3. Option C: [tex]\( \sqrt{x^3} \)[/tex]
The notation [tex]\( \sqrt{x^3} \)[/tex] represents the square root of [tex]\( x^3 \)[/tex]. In exponential form, it can be expressed as:
[tex]\[ \sqrt{x^3} = (x^3)^{\frac{1}{2}} = x^{3 \cdot \frac{1}{2}} = x^{\frac{3}{2}} \][/tex]
This is different from [tex]\( x^{\frac{1}{3}} \)[/tex] because [tex]\( \frac{3}{2} \ne \frac{1}{3} \)[/tex].
4. Option D: [tex]\( \frac{\pi}{3} \)[/tex]
The expression [tex]\( \frac{\pi}{3} \)[/tex] is a numerical value and has no variable component associated with [tex]\( x \)[/tex]. Thus, it cannot be equivalent to [tex]\( x^{\frac{1}{3}} \)[/tex].
Based on this detailed evaluation, the correct equivalent expression to [tex]\( x^{\frac{1}{3}} \)[/tex] is:
Option A: [tex]\( \sqrt[3]{x} \)[/tex]
1. Option A: [tex]\( \sqrt[3]{x} \)[/tex]
The notation [tex]\( \sqrt[3]{x} \)[/tex] represents the cube root of [tex]\( x \)[/tex]. By definition, taking the cube root of [tex]\( x \)[/tex] is the same as raising [tex]\( x \)[/tex] to the power of [tex]\( \frac{1}{3} \)[/tex]. Therefore,
[tex]\[ \sqrt[3]{x} = x^{\frac{1}{3}} \][/tex]
This matches the given expression exactly.
2. Option B: [tex]\( \frac{1}{x^3} \)[/tex]
The expression [tex]\( \frac{1}{x^3} \)[/tex] represents the reciprocal of [tex]\( x \)[/tex] raised to the power of 3. Simplified in exponential form, it can be written as:
[tex]\[ \frac{1}{x^3} = x^{-3} \][/tex]
This is clearly different from [tex]\( x^{\frac{1}{3}} \)[/tex] since [tex]\( -3 \ne \frac{1}{3} \)[/tex].
3. Option C: [tex]\( \sqrt{x^3} \)[/tex]
The notation [tex]\( \sqrt{x^3} \)[/tex] represents the square root of [tex]\( x^3 \)[/tex]. In exponential form, it can be expressed as:
[tex]\[ \sqrt{x^3} = (x^3)^{\frac{1}{2}} = x^{3 \cdot \frac{1}{2}} = x^{\frac{3}{2}} \][/tex]
This is different from [tex]\( x^{\frac{1}{3}} \)[/tex] because [tex]\( \frac{3}{2} \ne \frac{1}{3} \)[/tex].
4. Option D: [tex]\( \frac{\pi}{3} \)[/tex]
The expression [tex]\( \frac{\pi}{3} \)[/tex] is a numerical value and has no variable component associated with [tex]\( x \)[/tex]. Thus, it cannot be equivalent to [tex]\( x^{\frac{1}{3}} \)[/tex].
Based on this detailed evaluation, the correct equivalent expression to [tex]\( x^{\frac{1}{3}} \)[/tex] is:
Option A: [tex]\( \sqrt[3]{x} \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.