At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the expression equivalent to [tex]\( x^{\frac{1}{3}} \)[/tex], let's go through the given options one by one in detail:
1. Option A: [tex]\( \sqrt[3]{x} \)[/tex]
The notation [tex]\( \sqrt[3]{x} \)[/tex] represents the cube root of [tex]\( x \)[/tex]. By definition, taking the cube root of [tex]\( x \)[/tex] is the same as raising [tex]\( x \)[/tex] to the power of [tex]\( \frac{1}{3} \)[/tex]. Therefore,
[tex]\[ \sqrt[3]{x} = x^{\frac{1}{3}} \][/tex]
This matches the given expression exactly.
2. Option B: [tex]\( \frac{1}{x^3} \)[/tex]
The expression [tex]\( \frac{1}{x^3} \)[/tex] represents the reciprocal of [tex]\( x \)[/tex] raised to the power of 3. Simplified in exponential form, it can be written as:
[tex]\[ \frac{1}{x^3} = x^{-3} \][/tex]
This is clearly different from [tex]\( x^{\frac{1}{3}} \)[/tex] since [tex]\( -3 \ne \frac{1}{3} \)[/tex].
3. Option C: [tex]\( \sqrt{x^3} \)[/tex]
The notation [tex]\( \sqrt{x^3} \)[/tex] represents the square root of [tex]\( x^3 \)[/tex]. In exponential form, it can be expressed as:
[tex]\[ \sqrt{x^3} = (x^3)^{\frac{1}{2}} = x^{3 \cdot \frac{1}{2}} = x^{\frac{3}{2}} \][/tex]
This is different from [tex]\( x^{\frac{1}{3}} \)[/tex] because [tex]\( \frac{3}{2} \ne \frac{1}{3} \)[/tex].
4. Option D: [tex]\( \frac{\pi}{3} \)[/tex]
The expression [tex]\( \frac{\pi}{3} \)[/tex] is a numerical value and has no variable component associated with [tex]\( x \)[/tex]. Thus, it cannot be equivalent to [tex]\( x^{\frac{1}{3}} \)[/tex].
Based on this detailed evaluation, the correct equivalent expression to [tex]\( x^{\frac{1}{3}} \)[/tex] is:
Option A: [tex]\( \sqrt[3]{x} \)[/tex]
1. Option A: [tex]\( \sqrt[3]{x} \)[/tex]
The notation [tex]\( \sqrt[3]{x} \)[/tex] represents the cube root of [tex]\( x \)[/tex]. By definition, taking the cube root of [tex]\( x \)[/tex] is the same as raising [tex]\( x \)[/tex] to the power of [tex]\( \frac{1}{3} \)[/tex]. Therefore,
[tex]\[ \sqrt[3]{x} = x^{\frac{1}{3}} \][/tex]
This matches the given expression exactly.
2. Option B: [tex]\( \frac{1}{x^3} \)[/tex]
The expression [tex]\( \frac{1}{x^3} \)[/tex] represents the reciprocal of [tex]\( x \)[/tex] raised to the power of 3. Simplified in exponential form, it can be written as:
[tex]\[ \frac{1}{x^3} = x^{-3} \][/tex]
This is clearly different from [tex]\( x^{\frac{1}{3}} \)[/tex] since [tex]\( -3 \ne \frac{1}{3} \)[/tex].
3. Option C: [tex]\( \sqrt{x^3} \)[/tex]
The notation [tex]\( \sqrt{x^3} \)[/tex] represents the square root of [tex]\( x^3 \)[/tex]. In exponential form, it can be expressed as:
[tex]\[ \sqrt{x^3} = (x^3)^{\frac{1}{2}} = x^{3 \cdot \frac{1}{2}} = x^{\frac{3}{2}} \][/tex]
This is different from [tex]\( x^{\frac{1}{3}} \)[/tex] because [tex]\( \frac{3}{2} \ne \frac{1}{3} \)[/tex].
4. Option D: [tex]\( \frac{\pi}{3} \)[/tex]
The expression [tex]\( \frac{\pi}{3} \)[/tex] is a numerical value and has no variable component associated with [tex]\( x \)[/tex]. Thus, it cannot be equivalent to [tex]\( x^{\frac{1}{3}} \)[/tex].
Based on this detailed evaluation, the correct equivalent expression to [tex]\( x^{\frac{1}{3}} \)[/tex] is:
Option A: [tex]\( \sqrt[3]{x} \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.