Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the expression equivalent to [tex]\( x^{\frac{1}{3}} \)[/tex], let's go through the given options one by one in detail:
1. Option A: [tex]\( \sqrt[3]{x} \)[/tex]
The notation [tex]\( \sqrt[3]{x} \)[/tex] represents the cube root of [tex]\( x \)[/tex]. By definition, taking the cube root of [tex]\( x \)[/tex] is the same as raising [tex]\( x \)[/tex] to the power of [tex]\( \frac{1}{3} \)[/tex]. Therefore,
[tex]\[ \sqrt[3]{x} = x^{\frac{1}{3}} \][/tex]
This matches the given expression exactly.
2. Option B: [tex]\( \frac{1}{x^3} \)[/tex]
The expression [tex]\( \frac{1}{x^3} \)[/tex] represents the reciprocal of [tex]\( x \)[/tex] raised to the power of 3. Simplified in exponential form, it can be written as:
[tex]\[ \frac{1}{x^3} = x^{-3} \][/tex]
This is clearly different from [tex]\( x^{\frac{1}{3}} \)[/tex] since [tex]\( -3 \ne \frac{1}{3} \)[/tex].
3. Option C: [tex]\( \sqrt{x^3} \)[/tex]
The notation [tex]\( \sqrt{x^3} \)[/tex] represents the square root of [tex]\( x^3 \)[/tex]. In exponential form, it can be expressed as:
[tex]\[ \sqrt{x^3} = (x^3)^{\frac{1}{2}} = x^{3 \cdot \frac{1}{2}} = x^{\frac{3}{2}} \][/tex]
This is different from [tex]\( x^{\frac{1}{3}} \)[/tex] because [tex]\( \frac{3}{2} \ne \frac{1}{3} \)[/tex].
4. Option D: [tex]\( \frac{\pi}{3} \)[/tex]
The expression [tex]\( \frac{\pi}{3} \)[/tex] is a numerical value and has no variable component associated with [tex]\( x \)[/tex]. Thus, it cannot be equivalent to [tex]\( x^{\frac{1}{3}} \)[/tex].
Based on this detailed evaluation, the correct equivalent expression to [tex]\( x^{\frac{1}{3}} \)[/tex] is:
Option A: [tex]\( \sqrt[3]{x} \)[/tex]
1. Option A: [tex]\( \sqrt[3]{x} \)[/tex]
The notation [tex]\( \sqrt[3]{x} \)[/tex] represents the cube root of [tex]\( x \)[/tex]. By definition, taking the cube root of [tex]\( x \)[/tex] is the same as raising [tex]\( x \)[/tex] to the power of [tex]\( \frac{1}{3} \)[/tex]. Therefore,
[tex]\[ \sqrt[3]{x} = x^{\frac{1}{3}} \][/tex]
This matches the given expression exactly.
2. Option B: [tex]\( \frac{1}{x^3} \)[/tex]
The expression [tex]\( \frac{1}{x^3} \)[/tex] represents the reciprocal of [tex]\( x \)[/tex] raised to the power of 3. Simplified in exponential form, it can be written as:
[tex]\[ \frac{1}{x^3} = x^{-3} \][/tex]
This is clearly different from [tex]\( x^{\frac{1}{3}} \)[/tex] since [tex]\( -3 \ne \frac{1}{3} \)[/tex].
3. Option C: [tex]\( \sqrt{x^3} \)[/tex]
The notation [tex]\( \sqrt{x^3} \)[/tex] represents the square root of [tex]\( x^3 \)[/tex]. In exponential form, it can be expressed as:
[tex]\[ \sqrt{x^3} = (x^3)^{\frac{1}{2}} = x^{3 \cdot \frac{1}{2}} = x^{\frac{3}{2}} \][/tex]
This is different from [tex]\( x^{\frac{1}{3}} \)[/tex] because [tex]\( \frac{3}{2} \ne \frac{1}{3} \)[/tex].
4. Option D: [tex]\( \frac{\pi}{3} \)[/tex]
The expression [tex]\( \frac{\pi}{3} \)[/tex] is a numerical value and has no variable component associated with [tex]\( x \)[/tex]. Thus, it cannot be equivalent to [tex]\( x^{\frac{1}{3}} \)[/tex].
Based on this detailed evaluation, the correct equivalent expression to [tex]\( x^{\frac{1}{3}} \)[/tex] is:
Option A: [tex]\( \sqrt[3]{x} \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.