Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's rewrite the radical expression [tex]\((\sqrt{x})^5\)[/tex] in rational exponent form step-by-step.
1. Understanding the Square Root:
The square root of [tex]\(x\)[/tex] can be written as [tex]\(x^{1/2}\)[/tex]. Therefore, [tex]\(\sqrt{x} = x^{1/2}\)[/tex].
2. Applying the Property of Exponents:
Now, we need to deal with the given expression [tex]\((\sqrt{x})^5\)[/tex]. Substituting the square root in rational exponent form:
[tex]\[ (\sqrt{x})^5 = (x^{1/2})^5 \][/tex]
3. Using the Power of a Power Property:
When we raise a power to another power, we multiply the exponents. The property [tex]\((a^m)^n = a^{mn}\)[/tex] applies here.
[tex]\[ (x^{1/2})^5 = x^{(1/2) \cdot 5} \][/tex]
4. Multiplying the Exponents:
Multiply [tex]\(\frac{1}{2}\)[/tex] by 5 to simplify the exponent.
[tex]\[ x^{(1/2) \cdot 5} = x^{5/2} \][/tex]
Therefore, the expression [tex]\((\sqrt{x})^5\)[/tex] rewritten in rational exponent form is:
[tex]\[ x^{\frac{5}{2}} \][/tex]
Since we have correctly identified the expression, the correct answer is:
[tex]\[ \boxed{x^{\frac{5}{2}}} \][/tex]
Hence, the corresponding option is:
[tex]\[ \boxed{C} \][/tex]
1. Understanding the Square Root:
The square root of [tex]\(x\)[/tex] can be written as [tex]\(x^{1/2}\)[/tex]. Therefore, [tex]\(\sqrt{x} = x^{1/2}\)[/tex].
2. Applying the Property of Exponents:
Now, we need to deal with the given expression [tex]\((\sqrt{x})^5\)[/tex]. Substituting the square root in rational exponent form:
[tex]\[ (\sqrt{x})^5 = (x^{1/2})^5 \][/tex]
3. Using the Power of a Power Property:
When we raise a power to another power, we multiply the exponents. The property [tex]\((a^m)^n = a^{mn}\)[/tex] applies here.
[tex]\[ (x^{1/2})^5 = x^{(1/2) \cdot 5} \][/tex]
4. Multiplying the Exponents:
Multiply [tex]\(\frac{1}{2}\)[/tex] by 5 to simplify the exponent.
[tex]\[ x^{(1/2) \cdot 5} = x^{5/2} \][/tex]
Therefore, the expression [tex]\((\sqrt{x})^5\)[/tex] rewritten in rational exponent form is:
[tex]\[ x^{\frac{5}{2}} \][/tex]
Since we have correctly identified the expression, the correct answer is:
[tex]\[ \boxed{x^{\frac{5}{2}}} \][/tex]
Hence, the corresponding option is:
[tex]\[ \boxed{C} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.