Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which best describes the graph of the function [tex]\( f(x) = 4(1.5)^x \)[/tex], we need to analyze its key properties.
### Step-by-Step Analysis:
1. Identify the y-intercept:
- The y-intercept occurs when [tex]\( x = 0 \)[/tex].
- Substituting [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = 4(1.5)^0 \][/tex]
- Since any non-zero number raised to the power of 0 equals 1:
[tex]\[ f(0) = 4(1) = 4 \][/tex]
- Therefore, the graph passes through the point [tex]\( (0, 4) \)[/tex].
2. Determine the growth factor:
- The function [tex]\( f(x) = a \cdot b^x \)[/tex] is an exponential function where [tex]\( a \)[/tex] is the initial value (or y-intercept), and [tex]\( b \)[/tex] is the base or growth factor.
- In the function [tex]\( f(x) = 4(1.5)^x \)[/tex], the base [tex]\( b = 1.5 \)[/tex].
3. Interpret the growth factor:
- Each increase of 1 in the [tex]\( x \)[/tex]-values means the [tex]\( y \)[/tex]-values are multiplied by the growth factor [tex]\( b \)[/tex].
- For every increase of 1 in [tex]\( x \)[/tex], the [tex]\( y \)[/tex]-value is multiplied by [tex]\( 1.5 \)[/tex].
### Conclusion:
- The graph of the function [tex]\( f(x) = 4(1.5)^x \)[/tex] passes through the point [tex]\( (0, 4) \)[/tex].
- For each increase of 1 in the [tex]\( x \)[/tex]-values, the [tex]\( y \)[/tex]-values increase by a factor of [tex]\( 1.5 \)[/tex].
Thus, the correct description of the graph is:
- The graph passes through the point [tex]\((0,4)\)[/tex], and for each increase of 1 in the [tex]\( x \)[/tex]-values, the [tex]\( y \)[/tex]-values increase by a factor of 1.5.
Therefore, the answer is:
[tex]\[ \boxed{2} \][/tex]
### Step-by-Step Analysis:
1. Identify the y-intercept:
- The y-intercept occurs when [tex]\( x = 0 \)[/tex].
- Substituting [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = 4(1.5)^0 \][/tex]
- Since any non-zero number raised to the power of 0 equals 1:
[tex]\[ f(0) = 4(1) = 4 \][/tex]
- Therefore, the graph passes through the point [tex]\( (0, 4) \)[/tex].
2. Determine the growth factor:
- The function [tex]\( f(x) = a \cdot b^x \)[/tex] is an exponential function where [tex]\( a \)[/tex] is the initial value (or y-intercept), and [tex]\( b \)[/tex] is the base or growth factor.
- In the function [tex]\( f(x) = 4(1.5)^x \)[/tex], the base [tex]\( b = 1.5 \)[/tex].
3. Interpret the growth factor:
- Each increase of 1 in the [tex]\( x \)[/tex]-values means the [tex]\( y \)[/tex]-values are multiplied by the growth factor [tex]\( b \)[/tex].
- For every increase of 1 in [tex]\( x \)[/tex], the [tex]\( y \)[/tex]-value is multiplied by [tex]\( 1.5 \)[/tex].
### Conclusion:
- The graph of the function [tex]\( f(x) = 4(1.5)^x \)[/tex] passes through the point [tex]\( (0, 4) \)[/tex].
- For each increase of 1 in the [tex]\( x \)[/tex]-values, the [tex]\( y \)[/tex]-values increase by a factor of [tex]\( 1.5 \)[/tex].
Thus, the correct description of the graph is:
- The graph passes through the point [tex]\((0,4)\)[/tex], and for each increase of 1 in the [tex]\( x \)[/tex]-values, the [tex]\( y \)[/tex]-values increase by a factor of 1.5.
Therefore, the answer is:
[tex]\[ \boxed{2} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.