Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the pair of points representing the solution set of the system of equations:
1. First, we have the equations:
[tex]\[ y = x^2 - 2x - 19 \][/tex]
[tex]\[ y + 4x = 5 \][/tex]
2. We substitute the expression for [tex]\(y\)[/tex] from the second equation into the first equation. From the second equation, solve for [tex]\(y\)[/tex]:
[tex]\[ y = 5 - 4x \][/tex]
3. Substitute [tex]\( y = 5 - 4x \)[/tex] into the first equation:
[tex]\[ 5 - 4x = x^2 - 2x - 19 \][/tex]
4. Rearrange the equation to form a standard quadratic equation:
[tex]\[ x^2 - 2x - 19 - 5 + 4x = 0 \][/tex]
[tex]\[ x^2 + 2x - 24 = 0 \][/tex]
5. Factorize or use the quadratic formula to solve for [tex]\(x\)[/tex]. The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -24 \)[/tex].
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-24)}}{2(1)} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 96}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{100}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm 10}{2} \][/tex]
This gives us two solutions for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{8}{2} = 4 \][/tex]
[tex]\[ x = \frac{-12}{2} = -6 \][/tex]
6. Substitute these [tex]\(x\)[/tex]-values back into the second equation to find the corresponding [tex]\(y\)[/tex]-values:
For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 5 - 4(4) = 5 - 16 = -11 \][/tex]
For [tex]\( x = -6 \)[/tex]:
[tex]\[ y = 5 - 4(-6) = 5 + 24 = 29 \][/tex]
The pair of points representing the solutions to the system of equations are [tex]\((-6, 29)\)[/tex] and [tex]\((4, -11)\)[/tex].
Therefore, the missing pair of points is:
[tex]\[ (4, -11) \][/tex]
1. First, we have the equations:
[tex]\[ y = x^2 - 2x - 19 \][/tex]
[tex]\[ y + 4x = 5 \][/tex]
2. We substitute the expression for [tex]\(y\)[/tex] from the second equation into the first equation. From the second equation, solve for [tex]\(y\)[/tex]:
[tex]\[ y = 5 - 4x \][/tex]
3. Substitute [tex]\( y = 5 - 4x \)[/tex] into the first equation:
[tex]\[ 5 - 4x = x^2 - 2x - 19 \][/tex]
4. Rearrange the equation to form a standard quadratic equation:
[tex]\[ x^2 - 2x - 19 - 5 + 4x = 0 \][/tex]
[tex]\[ x^2 + 2x - 24 = 0 \][/tex]
5. Factorize or use the quadratic formula to solve for [tex]\(x\)[/tex]. The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -24 \)[/tex].
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-24)}}{2(1)} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 96}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{100}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm 10}{2} \][/tex]
This gives us two solutions for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{8}{2} = 4 \][/tex]
[tex]\[ x = \frac{-12}{2} = -6 \][/tex]
6. Substitute these [tex]\(x\)[/tex]-values back into the second equation to find the corresponding [tex]\(y\)[/tex]-values:
For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 5 - 4(4) = 5 - 16 = -11 \][/tex]
For [tex]\( x = -6 \)[/tex]:
[tex]\[ y = 5 - 4(-6) = 5 + 24 = 29 \][/tex]
The pair of points representing the solutions to the system of equations are [tex]\((-6, 29)\)[/tex] and [tex]\((4, -11)\)[/tex].
Therefore, the missing pair of points is:
[tex]\[ (4, -11) \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.