Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve this problem step-by-step.
### Case 1: Starting from a stationary position to [tex]\( 5 \, m/s \)[/tex] in [tex]\( 20 \, s \)[/tex]
1. Initial velocity ([tex]\( u_1 \)[/tex]): [tex]\( 0 \, m/s \)[/tex]
2. Final velocity ([tex]\( v_1 \)[/tex]): [tex]\( 5 \, m/s \)[/tex]
3. Time taken ([tex]\( t_1 \)[/tex]): [tex]\( 20 \, s \)[/tex]
To calculate the acceleration ([tex]\( a_1 \)[/tex]), we use the formula:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a_1 = \frac{5 \, m/s - 0 \, m/s}{20 \, s} \][/tex]
[tex]\[ a_1 = \frac{5}{20} \][/tex]
[tex]\[ a_1 = 0.25 \, m/s^2 \][/tex]
So, the acceleration in the first case is [tex]\( 0.25 \, m/s^2 \)[/tex].
### Case 2: From [tex]\( 5 \, m/s \)[/tex] to [tex]\( 3 \, m/s \)[/tex] in [tex]\( 6 \, s \)[/tex]
1. Initial velocity ([tex]\( u_2 \)[/tex]): [tex]\( 5 \, m/s \)[/tex]
2. Final velocity ([tex]\( v_2 \)[/tex]): [tex]\( 3 \, m/s \)[/tex]
3. Time taken ([tex]\( t_2 \)[/tex]): [tex]\( 6 \, s \)[/tex]
To calculate the acceleration ([tex]\( a_2 \)[/tex]), we again use the formula:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a_2 = \frac{3 \, m/s - 5 \, m/s}{6 \, s} \][/tex]
[tex]\[ a_2 = \frac{-2}{6} \][/tex]
[tex]\[ a_2 = -0.333 \, m/s^2 \][/tex]
So, the acceleration in the second case is [tex]\( -0.333 \, m/s^2 \)[/tex] (negative acceleration indicates deceleration).
### Summary
- Acceleration from stationary to [tex]\( 5 \, m/s \)[/tex] in [tex]\( 20 \, s \)[/tex]: [tex]\( 0.25 \, m/s^2 \)[/tex]
- Acceleration from [tex]\( 5 \, m/s \)[/tex] to [tex]\( 3 \, m/s \)[/tex] in [tex]\( 6 \, s \)[/tex]: [tex]\( -0.333 \, m/s^2 \)[/tex]
These are the accelerations for both cases.
### Case 1: Starting from a stationary position to [tex]\( 5 \, m/s \)[/tex] in [tex]\( 20 \, s \)[/tex]
1. Initial velocity ([tex]\( u_1 \)[/tex]): [tex]\( 0 \, m/s \)[/tex]
2. Final velocity ([tex]\( v_1 \)[/tex]): [tex]\( 5 \, m/s \)[/tex]
3. Time taken ([tex]\( t_1 \)[/tex]): [tex]\( 20 \, s \)[/tex]
To calculate the acceleration ([tex]\( a_1 \)[/tex]), we use the formula:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a_1 = \frac{5 \, m/s - 0 \, m/s}{20 \, s} \][/tex]
[tex]\[ a_1 = \frac{5}{20} \][/tex]
[tex]\[ a_1 = 0.25 \, m/s^2 \][/tex]
So, the acceleration in the first case is [tex]\( 0.25 \, m/s^2 \)[/tex].
### Case 2: From [tex]\( 5 \, m/s \)[/tex] to [tex]\( 3 \, m/s \)[/tex] in [tex]\( 6 \, s \)[/tex]
1. Initial velocity ([tex]\( u_2 \)[/tex]): [tex]\( 5 \, m/s \)[/tex]
2. Final velocity ([tex]\( v_2 \)[/tex]): [tex]\( 3 \, m/s \)[/tex]
3. Time taken ([tex]\( t_2 \)[/tex]): [tex]\( 6 \, s \)[/tex]
To calculate the acceleration ([tex]\( a_2 \)[/tex]), we again use the formula:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a_2 = \frac{3 \, m/s - 5 \, m/s}{6 \, s} \][/tex]
[tex]\[ a_2 = \frac{-2}{6} \][/tex]
[tex]\[ a_2 = -0.333 \, m/s^2 \][/tex]
So, the acceleration in the second case is [tex]\( -0.333 \, m/s^2 \)[/tex] (negative acceleration indicates deceleration).
### Summary
- Acceleration from stationary to [tex]\( 5 \, m/s \)[/tex] in [tex]\( 20 \, s \)[/tex]: [tex]\( 0.25 \, m/s^2 \)[/tex]
- Acceleration from [tex]\( 5 \, m/s \)[/tex] to [tex]\( 3 \, m/s \)[/tex] in [tex]\( 6 \, s \)[/tex]: [tex]\( -0.333 \, m/s^2 \)[/tex]
These are the accelerations for both cases.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.