Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! To determine the Gibbs free energy ([tex]\(\Delta G\)[/tex]) of a reaction, we can use the following thermodynamic relation:
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
Where:
- [tex]\(\Delta G\)[/tex] is the Gibbs free energy change
- [tex]\(\Delta H\)[/tex] is the enthalpy change ([tex]\(46 \, \text{kJ/mol}\)[/tex])
- [tex]\(T\)[/tex] is the temperature in Kelvin ([tex]\(298 \, \text{K}\)[/tex])
- [tex]\(\Delta S\)[/tex] is the entropy change ([tex]\(0.097 \, \text{kJ/(K·mol)}\)[/tex])
Substituting the given values into the equation:
[tex]\[ \Delta G = 46 \, \text{kJ/mol} - 298 \, \text{K} \times 0.097 \, \text{kJ/(K·mol)} \][/tex]
Next, we compute the product of the temperature and the entropy change:
[tex]\[ 298 \, \text{K} \times 0.097 \, \text{kJ/(K·mol)} = 28.906 \, \text{kJ/mol} \][/tex]
Now, subtract this result from the enthalpy change:
[tex]\[ 46 \, \text{kJ/mol} - 28.906 \, \text{kJ/mol} = 17.094 \, \text{kJ/mol} \][/tex]
Therefore, the Gibbs free energy of the reaction is approximately [tex]\(17.094 \, \text{kJ/mol}\)[/tex]. Since we generally round to a sensible number of significant figures based on the given data, we round it to [tex]\(17 \, \text{kJ/mol}\)[/tex].
Thus, the answer is:
B. [tex]\(17 \, \text{kJ}\)[/tex]
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
Where:
- [tex]\(\Delta G\)[/tex] is the Gibbs free energy change
- [tex]\(\Delta H\)[/tex] is the enthalpy change ([tex]\(46 \, \text{kJ/mol}\)[/tex])
- [tex]\(T\)[/tex] is the temperature in Kelvin ([tex]\(298 \, \text{K}\)[/tex])
- [tex]\(\Delta S\)[/tex] is the entropy change ([tex]\(0.097 \, \text{kJ/(K·mol)}\)[/tex])
Substituting the given values into the equation:
[tex]\[ \Delta G = 46 \, \text{kJ/mol} - 298 \, \text{K} \times 0.097 \, \text{kJ/(K·mol)} \][/tex]
Next, we compute the product of the temperature and the entropy change:
[tex]\[ 298 \, \text{K} \times 0.097 \, \text{kJ/(K·mol)} = 28.906 \, \text{kJ/mol} \][/tex]
Now, subtract this result from the enthalpy change:
[tex]\[ 46 \, \text{kJ/mol} - 28.906 \, \text{kJ/mol} = 17.094 \, \text{kJ/mol} \][/tex]
Therefore, the Gibbs free energy of the reaction is approximately [tex]\(17.094 \, \text{kJ/mol}\)[/tex]. Since we generally round to a sensible number of significant figures based on the given data, we round it to [tex]\(17 \, \text{kJ/mol}\)[/tex].
Thus, the answer is:
B. [tex]\(17 \, \text{kJ}\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.