Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! To determine the Gibbs free energy ([tex]\(\Delta G\)[/tex]) of a reaction, we can use the following thermodynamic relation:
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
Where:
- [tex]\(\Delta G\)[/tex] is the Gibbs free energy change
- [tex]\(\Delta H\)[/tex] is the enthalpy change ([tex]\(46 \, \text{kJ/mol}\)[/tex])
- [tex]\(T\)[/tex] is the temperature in Kelvin ([tex]\(298 \, \text{K}\)[/tex])
- [tex]\(\Delta S\)[/tex] is the entropy change ([tex]\(0.097 \, \text{kJ/(K·mol)}\)[/tex])
Substituting the given values into the equation:
[tex]\[ \Delta G = 46 \, \text{kJ/mol} - 298 \, \text{K} \times 0.097 \, \text{kJ/(K·mol)} \][/tex]
Next, we compute the product of the temperature and the entropy change:
[tex]\[ 298 \, \text{K} \times 0.097 \, \text{kJ/(K·mol)} = 28.906 \, \text{kJ/mol} \][/tex]
Now, subtract this result from the enthalpy change:
[tex]\[ 46 \, \text{kJ/mol} - 28.906 \, \text{kJ/mol} = 17.094 \, \text{kJ/mol} \][/tex]
Therefore, the Gibbs free energy of the reaction is approximately [tex]\(17.094 \, \text{kJ/mol}\)[/tex]. Since we generally round to a sensible number of significant figures based on the given data, we round it to [tex]\(17 \, \text{kJ/mol}\)[/tex].
Thus, the answer is:
B. [tex]\(17 \, \text{kJ}\)[/tex]
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
Where:
- [tex]\(\Delta G\)[/tex] is the Gibbs free energy change
- [tex]\(\Delta H\)[/tex] is the enthalpy change ([tex]\(46 \, \text{kJ/mol}\)[/tex])
- [tex]\(T\)[/tex] is the temperature in Kelvin ([tex]\(298 \, \text{K}\)[/tex])
- [tex]\(\Delta S\)[/tex] is the entropy change ([tex]\(0.097 \, \text{kJ/(K·mol)}\)[/tex])
Substituting the given values into the equation:
[tex]\[ \Delta G = 46 \, \text{kJ/mol} - 298 \, \text{K} \times 0.097 \, \text{kJ/(K·mol)} \][/tex]
Next, we compute the product of the temperature and the entropy change:
[tex]\[ 298 \, \text{K} \times 0.097 \, \text{kJ/(K·mol)} = 28.906 \, \text{kJ/mol} \][/tex]
Now, subtract this result from the enthalpy change:
[tex]\[ 46 \, \text{kJ/mol} - 28.906 \, \text{kJ/mol} = 17.094 \, \text{kJ/mol} \][/tex]
Therefore, the Gibbs free energy of the reaction is approximately [tex]\(17.094 \, \text{kJ/mol}\)[/tex]. Since we generally round to a sensible number of significant figures based on the given data, we round it to [tex]\(17 \, \text{kJ/mol}\)[/tex].
Thus, the answer is:
B. [tex]\(17 \, \text{kJ}\)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.