Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the perimeter of the right triangle with legs measuring 6 feet and 8 feet, we need to follow these steps:
1. Find the length of the hypotenuse:
The hypotenuse is the longest side of a right triangle, and it can be calculated using the Pythagorean theorem. The Pythagorean theorem states that for a right triangle with legs [tex]\(\text{a}\)[/tex] and [tex]\(\text{b}\)[/tex], and hypotenuse [tex]\(\text{c}\)[/tex], the relationship is given by:
[tex]\[ \text{c} = \sqrt{\text{a}^2 + \text{b}^2} \][/tex]
In this problem, [tex]\(\text{a} = 6\)[/tex] feet and [tex]\(\text{b} = 8\)[/tex] feet. Calculating the hypotenuse:
[tex]\[ \text{c} = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \text{ feet} \][/tex]
2. Calculate the perimeter:
The perimeter of a triangle is the sum of the lengths of its three sides. For our right triangle with leg lengths of 6 feet and 8 feet, and a hypotenuse of 10 feet, the perimeter is:
[tex]\[ \text{perimeter} = 6 \text{ feet} + 8 \text{ feet} + 10 \text{ feet} = 24 \text{ feet} \][/tex]
So, the perimeter of the triangle is:
[tex]\[ \text{24 feet} \][/tex]
Therefore, the correct answer is [tex]\( \boxed{24 \text{ feet}} \)[/tex].
1. Find the length of the hypotenuse:
The hypotenuse is the longest side of a right triangle, and it can be calculated using the Pythagorean theorem. The Pythagorean theorem states that for a right triangle with legs [tex]\(\text{a}\)[/tex] and [tex]\(\text{b}\)[/tex], and hypotenuse [tex]\(\text{c}\)[/tex], the relationship is given by:
[tex]\[ \text{c} = \sqrt{\text{a}^2 + \text{b}^2} \][/tex]
In this problem, [tex]\(\text{a} = 6\)[/tex] feet and [tex]\(\text{b} = 8\)[/tex] feet. Calculating the hypotenuse:
[tex]\[ \text{c} = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \text{ feet} \][/tex]
2. Calculate the perimeter:
The perimeter of a triangle is the sum of the lengths of its three sides. For our right triangle with leg lengths of 6 feet and 8 feet, and a hypotenuse of 10 feet, the perimeter is:
[tex]\[ \text{perimeter} = 6 \text{ feet} + 8 \text{ feet} + 10 \text{ feet} = 24 \text{ feet} \][/tex]
So, the perimeter of the triangle is:
[tex]\[ \text{24 feet} \][/tex]
Therefore, the correct answer is [tex]\( \boxed{24 \text{ feet}} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.