Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve this step-by-step to determine the radius of a sphere that has the same surface area as a given cylinder.
### Step 1: Calculate the Surface Area of the Cylinder
A cylinder's surface area is given by the formula:
[tex]\[ \text{Surface Area} = 2\pi rh + 2\pi r^2 \][/tex]
Given:
- Height (h) = 4 meters
- Radius (r) = 1.5 meters
Plugging these values into the formula, we have:
[tex]\[ \text{Surface Area} = 2\pi (1.5)(4) + 2\pi (1.5)^2 \][/tex]
[tex]\[ \text{Surface Area} = 2\pi (6) + 2\pi (2.25) \][/tex]
[tex]\[ \text{Surface Area} = 12\pi + 4.5\pi \][/tex]
[tex]\[ \text{Surface Area} = 16.5\pi \][/tex]
Using the value of [tex]\(\pi\)[/tex] (pi) as approximately 3.141592653589793:
[tex]\[ \text{Surface Area} \approx 16.5 \times 3.141592653589793 \][/tex]
[tex]\[ \text{Surface Area} \approx 51.83627878423159 \text{ square meters} \][/tex]
### Step 2: Calculate the Radius of the Sphere
We need to find the radius of a sphere that has the same surface area as the cylinder. The surface area of a sphere is given by the formula:
[tex]\[ \text{Surface Area} = 4\pi r^2 \][/tex]
We set the surface area of the sphere equal to the surface area of the cylinder:
[tex]\[ 4\pi r^2 = 51.83627878423159 \][/tex]
Isolate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{51.83627878423159}{4\pi} \][/tex]
[tex]\[ r^2 = \frac{51.83627878423159}{4 \times 3.141592653589793} \][/tex]
[tex]\[ r^2 \approx \frac{51.83627878423159}{12.566370614359172} \][/tex]
[tex]\[ r^2 \approx 4.125 \][/tex]
Take the square root of both sides to find [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{4.125} \][/tex]
[tex]\[ r \approx 2.03100960115899 \][/tex]
Thus, the approximate radius of the sphere is:
[tex]\[ r \approx 2.0 \text{ meters} \][/tex]
### Conclusion
Among the given options, the approximate radius of the sphere that has the same surface area as the cylinder is:
D. 2.0 m
### Step 1: Calculate the Surface Area of the Cylinder
A cylinder's surface area is given by the formula:
[tex]\[ \text{Surface Area} = 2\pi rh + 2\pi r^2 \][/tex]
Given:
- Height (h) = 4 meters
- Radius (r) = 1.5 meters
Plugging these values into the formula, we have:
[tex]\[ \text{Surface Area} = 2\pi (1.5)(4) + 2\pi (1.5)^2 \][/tex]
[tex]\[ \text{Surface Area} = 2\pi (6) + 2\pi (2.25) \][/tex]
[tex]\[ \text{Surface Area} = 12\pi + 4.5\pi \][/tex]
[tex]\[ \text{Surface Area} = 16.5\pi \][/tex]
Using the value of [tex]\(\pi\)[/tex] (pi) as approximately 3.141592653589793:
[tex]\[ \text{Surface Area} \approx 16.5 \times 3.141592653589793 \][/tex]
[tex]\[ \text{Surface Area} \approx 51.83627878423159 \text{ square meters} \][/tex]
### Step 2: Calculate the Radius of the Sphere
We need to find the radius of a sphere that has the same surface area as the cylinder. The surface area of a sphere is given by the formula:
[tex]\[ \text{Surface Area} = 4\pi r^2 \][/tex]
We set the surface area of the sphere equal to the surface area of the cylinder:
[tex]\[ 4\pi r^2 = 51.83627878423159 \][/tex]
Isolate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{51.83627878423159}{4\pi} \][/tex]
[tex]\[ r^2 = \frac{51.83627878423159}{4 \times 3.141592653589793} \][/tex]
[tex]\[ r^2 \approx \frac{51.83627878423159}{12.566370614359172} \][/tex]
[tex]\[ r^2 \approx 4.125 \][/tex]
Take the square root of both sides to find [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{4.125} \][/tex]
[tex]\[ r \approx 2.03100960115899 \][/tex]
Thus, the approximate radius of the sphere is:
[tex]\[ r \approx 2.0 \text{ meters} \][/tex]
### Conclusion
Among the given options, the approximate radius of the sphere that has the same surface area as the cylinder is:
D. 2.0 m
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.