Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's solve this step-by-step using Snell's Law.
### Step-by-Step Solution:
1. Identify the Given Values:
- Angle of incidence ([tex]\( \theta_1 \)[/tex]): 35 degrees
- Refractive index of water ([tex]\( n_1 \)[/tex]): 1.33
- Refractive index of air ([tex]\( n_2 \)[/tex]): 1.00
2. Convert Angle of Incidence to Radians:
Since calculations with trigonometric functions commonly use radians, we convert 35 degrees to radians:
[tex]\[ \theta_1 = 35^\circ \approx 0.6108652381980153 \text{ radians} \][/tex]
3. Apply Snell's Law:
Snell's Law states that:
[tex]\[ n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \][/tex]
We need to solve for the angle of refraction ([tex]\( \theta_2 \)[/tex]).
4. Calculate [tex]\( \sin(\theta_2) \)[/tex]:
Rearrange Snell's Law to solve for [tex]\( \sin(\theta_2) \)[/tex]:
[tex]\[ \sin(\theta_2) = \frac{n_1 \sin(\theta_1)}{n_2} \][/tex]
Substitute the values:
[tex]\[ \sin(\theta_2) = \frac{1.33 \sin(0.6108652381980153)}{1.00} \approx 0.7628566603468913 \][/tex]
5. Find [tex]\( \theta_2 \)[/tex] in Radians:
To find the angle of refraction in radians, we take the inverse sine (arcsine) of [tex]\( \sin(\theta_2) \)[/tex]:
[tex]\[ \theta_2 \approx \arcsin(0.7628566603468913) \approx 0.867719865780809 \text{ radians} \][/tex]
6. Convert the Angle of Refraction to Degrees:
Convert [tex]\( \theta_2 \)[/tex] from radians to degrees:
[tex]\[ \theta_2 \approx 49.716686108898614^\circ \][/tex]
Thus, the angle of refraction when a light ray passes from water into the air with an angle of incidence of 35 degrees is approximately [tex]\( 49.72^\circ \)[/tex].
### Step-by-Step Solution:
1. Identify the Given Values:
- Angle of incidence ([tex]\( \theta_1 \)[/tex]): 35 degrees
- Refractive index of water ([tex]\( n_1 \)[/tex]): 1.33
- Refractive index of air ([tex]\( n_2 \)[/tex]): 1.00
2. Convert Angle of Incidence to Radians:
Since calculations with trigonometric functions commonly use radians, we convert 35 degrees to radians:
[tex]\[ \theta_1 = 35^\circ \approx 0.6108652381980153 \text{ radians} \][/tex]
3. Apply Snell's Law:
Snell's Law states that:
[tex]\[ n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \][/tex]
We need to solve for the angle of refraction ([tex]\( \theta_2 \)[/tex]).
4. Calculate [tex]\( \sin(\theta_2) \)[/tex]:
Rearrange Snell's Law to solve for [tex]\( \sin(\theta_2) \)[/tex]:
[tex]\[ \sin(\theta_2) = \frac{n_1 \sin(\theta_1)}{n_2} \][/tex]
Substitute the values:
[tex]\[ \sin(\theta_2) = \frac{1.33 \sin(0.6108652381980153)}{1.00} \approx 0.7628566603468913 \][/tex]
5. Find [tex]\( \theta_2 \)[/tex] in Radians:
To find the angle of refraction in radians, we take the inverse sine (arcsine) of [tex]\( \sin(\theta_2) \)[/tex]:
[tex]\[ \theta_2 \approx \arcsin(0.7628566603468913) \approx 0.867719865780809 \text{ radians} \][/tex]
6. Convert the Angle of Refraction to Degrees:
Convert [tex]\( \theta_2 \)[/tex] from radians to degrees:
[tex]\[ \theta_2 \approx 49.716686108898614^\circ \][/tex]
Thus, the angle of refraction when a light ray passes from water into the air with an angle of incidence of 35 degrees is approximately [tex]\( 49.72^\circ \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.