Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's solve this step-by-step using Snell's Law.
### Step-by-Step Solution:
1. Identify the Given Values:
- Angle of incidence ([tex]\( \theta_1 \)[/tex]): 35 degrees
- Refractive index of water ([tex]\( n_1 \)[/tex]): 1.33
- Refractive index of air ([tex]\( n_2 \)[/tex]): 1.00
2. Convert Angle of Incidence to Radians:
Since calculations with trigonometric functions commonly use radians, we convert 35 degrees to radians:
[tex]\[ \theta_1 = 35^\circ \approx 0.6108652381980153 \text{ radians} \][/tex]
3. Apply Snell's Law:
Snell's Law states that:
[tex]\[ n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \][/tex]
We need to solve for the angle of refraction ([tex]\( \theta_2 \)[/tex]).
4. Calculate [tex]\( \sin(\theta_2) \)[/tex]:
Rearrange Snell's Law to solve for [tex]\( \sin(\theta_2) \)[/tex]:
[tex]\[ \sin(\theta_2) = \frac{n_1 \sin(\theta_1)}{n_2} \][/tex]
Substitute the values:
[tex]\[ \sin(\theta_2) = \frac{1.33 \sin(0.6108652381980153)}{1.00} \approx 0.7628566603468913 \][/tex]
5. Find [tex]\( \theta_2 \)[/tex] in Radians:
To find the angle of refraction in radians, we take the inverse sine (arcsine) of [tex]\( \sin(\theta_2) \)[/tex]:
[tex]\[ \theta_2 \approx \arcsin(0.7628566603468913) \approx 0.867719865780809 \text{ radians} \][/tex]
6. Convert the Angle of Refraction to Degrees:
Convert [tex]\( \theta_2 \)[/tex] from radians to degrees:
[tex]\[ \theta_2 \approx 49.716686108898614^\circ \][/tex]
Thus, the angle of refraction when a light ray passes from water into the air with an angle of incidence of 35 degrees is approximately [tex]\( 49.72^\circ \)[/tex].
### Step-by-Step Solution:
1. Identify the Given Values:
- Angle of incidence ([tex]\( \theta_1 \)[/tex]): 35 degrees
- Refractive index of water ([tex]\( n_1 \)[/tex]): 1.33
- Refractive index of air ([tex]\( n_2 \)[/tex]): 1.00
2. Convert Angle of Incidence to Radians:
Since calculations with trigonometric functions commonly use radians, we convert 35 degrees to radians:
[tex]\[ \theta_1 = 35^\circ \approx 0.6108652381980153 \text{ radians} \][/tex]
3. Apply Snell's Law:
Snell's Law states that:
[tex]\[ n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \][/tex]
We need to solve for the angle of refraction ([tex]\( \theta_2 \)[/tex]).
4. Calculate [tex]\( \sin(\theta_2) \)[/tex]:
Rearrange Snell's Law to solve for [tex]\( \sin(\theta_2) \)[/tex]:
[tex]\[ \sin(\theta_2) = \frac{n_1 \sin(\theta_1)}{n_2} \][/tex]
Substitute the values:
[tex]\[ \sin(\theta_2) = \frac{1.33 \sin(0.6108652381980153)}{1.00} \approx 0.7628566603468913 \][/tex]
5. Find [tex]\( \theta_2 \)[/tex] in Radians:
To find the angle of refraction in radians, we take the inverse sine (arcsine) of [tex]\( \sin(\theta_2) \)[/tex]:
[tex]\[ \theta_2 \approx \arcsin(0.7628566603468913) \approx 0.867719865780809 \text{ radians} \][/tex]
6. Convert the Angle of Refraction to Degrees:
Convert [tex]\( \theta_2 \)[/tex] from radians to degrees:
[tex]\[ \theta_2 \approx 49.716686108898614^\circ \][/tex]
Thus, the angle of refraction when a light ray passes from water into the air with an angle of incidence of 35 degrees is approximately [tex]\( 49.72^\circ \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.