Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which step should NOT be completed when evaluating the linear expression for [tex]\( x = 5 \)[/tex]:
[tex]\[ x + 5 + \frac{3x}{5} - 4 \][/tex]
Let's examine each option carefully:
A. Adding 5 and -4
Adding the constants 5 and -4 is a legitimate simplification:
[tex]\[ 5 - 4 = 1 \][/tex]
This can and should be done to simplify the expression.
B. Adding [tex]\( x \)[/tex] and [tex]\( 3x \)[/tex]
Adding like terms is valid here. Since [tex]\( x \)[/tex] and [tex]\( 3x \)[/tex] are like terms:
[tex]\[ x + 3x = 4x \][/tex]
This can and should be done to simplify the expression.
C. Simplifying the term [tex]\( \frac{3x}{5} \)[/tex] to 3
Let's check the correctness of simplifying [tex]\( \frac{3x}{5} \)[/tex] specifically for [tex]\( x = 5 \)[/tex]:
[tex]\[ \frac{3x}{5} = \frac{3 \cdot 5}{5} = \frac{15}{5} = 3 \][/tex]
This works when [tex]\( x = 5 \)[/tex], but this simplification is not generally correct for just any [tex]\( x \)[/tex]. The term [tex]\( \frac{3x}{5} \)[/tex] should remain [tex]\( \frac{3x}{5} \)[/tex] unless specifically evaluated for [tex]\( x = 5 \)[/tex]. Hence, simplifying [tex]\( \frac{3x}{5} \)[/tex] to 3 is incorrect as a general rule for the expression.
D. Rewriting the expression as [tex]\( x + \frac{3x}{5} + 5 - 4 \)[/tex]
Rewriting the expression by changing the order of terms while preserving the operations does not alter its value:
[tex]\[ x + 5 + \frac{3x}{5} - 4 \][/tex]
is equivalent to:
[tex]\[ x + \frac{3x}{5} + 5 - 4 \][/tex]
This step is legitimate and can be completed.
Given these evaluations, the step that should NOT be completed is:
[tex]\[ \boxed{C} \][/tex]
Simplifying the term [tex]\( \frac{3x}{5} \)[/tex] to 3 is not correct as a general simplification for any [tex]\( x \)[/tex], only for the specific case where [tex]\( x = 5 \)[/tex].
[tex]\[ x + 5 + \frac{3x}{5} - 4 \][/tex]
Let's examine each option carefully:
A. Adding 5 and -4
Adding the constants 5 and -4 is a legitimate simplification:
[tex]\[ 5 - 4 = 1 \][/tex]
This can and should be done to simplify the expression.
B. Adding [tex]\( x \)[/tex] and [tex]\( 3x \)[/tex]
Adding like terms is valid here. Since [tex]\( x \)[/tex] and [tex]\( 3x \)[/tex] are like terms:
[tex]\[ x + 3x = 4x \][/tex]
This can and should be done to simplify the expression.
C. Simplifying the term [tex]\( \frac{3x}{5} \)[/tex] to 3
Let's check the correctness of simplifying [tex]\( \frac{3x}{5} \)[/tex] specifically for [tex]\( x = 5 \)[/tex]:
[tex]\[ \frac{3x}{5} = \frac{3 \cdot 5}{5} = \frac{15}{5} = 3 \][/tex]
This works when [tex]\( x = 5 \)[/tex], but this simplification is not generally correct for just any [tex]\( x \)[/tex]. The term [tex]\( \frac{3x}{5} \)[/tex] should remain [tex]\( \frac{3x}{5} \)[/tex] unless specifically evaluated for [tex]\( x = 5 \)[/tex]. Hence, simplifying [tex]\( \frac{3x}{5} \)[/tex] to 3 is incorrect as a general rule for the expression.
D. Rewriting the expression as [tex]\( x + \frac{3x}{5} + 5 - 4 \)[/tex]
Rewriting the expression by changing the order of terms while preserving the operations does not alter its value:
[tex]\[ x + 5 + \frac{3x}{5} - 4 \][/tex]
is equivalent to:
[tex]\[ x + \frac{3x}{5} + 5 - 4 \][/tex]
This step is legitimate and can be completed.
Given these evaluations, the step that should NOT be completed is:
[tex]\[ \boxed{C} \][/tex]
Simplifying the term [tex]\( \frac{3x}{5} \)[/tex] to 3 is not correct as a general simplification for any [tex]\( x \)[/tex], only for the specific case where [tex]\( x = 5 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.