Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's work through the problem step-by-step.
### Part (c)
We need to complete the table using the function:
[tex]\[ \bar{C}(x) = \frac{1875}{x} + 50 \][/tex]
Calculate [tex]\(\bar{C}(x)\)[/tex] for the given [tex]\(x\)[/tex] values:
1. For [tex]\( x = 20 \)[/tex]:
[tex]\[ \bar{C}(20) = \frac{1875}{20} + 50 = 93.75 + 50 = 143.75 \][/tex]
2. For [tex]\( x = 50 \)[/tex]:
[tex]\[ \bar{C}(50) = \frac{1875}{50} + 50 = 37.5 + 50 = 87.5 \][/tex]
3. For [tex]\( x = 100 \)[/tex]:
[tex]\[ \bar{C}(100) = \frac{1875}{100} + 50 = 18.75 + 50 = 68.75 \][/tex]
4. For [tex]\( x = 200 \)[/tex]:
[tex]\[ \bar{C}(200) = \frac{1875}{200} + 50 = 9.375 + 50 = 59.38 \][/tex]
Thus, the completed table is:
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline x & 20 & 50 & 100 & 200 \\ \hline \bar{C}(x) & 143.75 & 87.5 & 68.75 & 59.38 \\ \hline \end{tabular} \][/tex]
### Part (d)
Next, we determine the value that the average cost per thousand pages [tex]\(\bar{C}(x)\)[/tex] approaches as [tex]\(x\)[/tex] increases indefinitely (i.e., as [tex]\(x \to \infty\)[/tex]).
From the function [tex]\(\bar{C}(x) = \frac{1875}{x} + 50\)[/tex], as [tex]\(x \to \infty\)[/tex], the term [tex]\(\frac{1875}{x}\)[/tex] approaches 0. Consequently:
[tex]\[ \bar{C}(x) \to 50 \][/tex]
Therefore, as [tex]\(x \to \infty\)[/tex], [tex]\(\bar{C}(x)\)[/tex] will approach:
[tex]\[ \boxed{50} \][/tex]
### Interpretation in context
In the context of the problem, this implies that as the number of pages printed ([tex]\(x\)[/tex]) increases to a very large number, the average cost per thousand pages will approach \$50. This represents the variable cost per thousand pages when fixed costs are averaged out over an increasingly large number of pages. This also implies that the fixed costs become negligible as the production scale increases, leaving the per-unit cost dictated primarily by the variable costs.
### Part (c)
We need to complete the table using the function:
[tex]\[ \bar{C}(x) = \frac{1875}{x} + 50 \][/tex]
Calculate [tex]\(\bar{C}(x)\)[/tex] for the given [tex]\(x\)[/tex] values:
1. For [tex]\( x = 20 \)[/tex]:
[tex]\[ \bar{C}(20) = \frac{1875}{20} + 50 = 93.75 + 50 = 143.75 \][/tex]
2. For [tex]\( x = 50 \)[/tex]:
[tex]\[ \bar{C}(50) = \frac{1875}{50} + 50 = 37.5 + 50 = 87.5 \][/tex]
3. For [tex]\( x = 100 \)[/tex]:
[tex]\[ \bar{C}(100) = \frac{1875}{100} + 50 = 18.75 + 50 = 68.75 \][/tex]
4. For [tex]\( x = 200 \)[/tex]:
[tex]\[ \bar{C}(200) = \frac{1875}{200} + 50 = 9.375 + 50 = 59.38 \][/tex]
Thus, the completed table is:
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline x & 20 & 50 & 100 & 200 \\ \hline \bar{C}(x) & 143.75 & 87.5 & 68.75 & 59.38 \\ \hline \end{tabular} \][/tex]
### Part (d)
Next, we determine the value that the average cost per thousand pages [tex]\(\bar{C}(x)\)[/tex] approaches as [tex]\(x\)[/tex] increases indefinitely (i.e., as [tex]\(x \to \infty\)[/tex]).
From the function [tex]\(\bar{C}(x) = \frac{1875}{x} + 50\)[/tex], as [tex]\(x \to \infty\)[/tex], the term [tex]\(\frac{1875}{x}\)[/tex] approaches 0. Consequently:
[tex]\[ \bar{C}(x) \to 50 \][/tex]
Therefore, as [tex]\(x \to \infty\)[/tex], [tex]\(\bar{C}(x)\)[/tex] will approach:
[tex]\[ \boxed{50} \][/tex]
### Interpretation in context
In the context of the problem, this implies that as the number of pages printed ([tex]\(x\)[/tex]) increases to a very large number, the average cost per thousand pages will approach \$50. This represents the variable cost per thousand pages when fixed costs are averaged out over an increasingly large number of pages. This also implies that the fixed costs become negligible as the production scale increases, leaving the per-unit cost dictated primarily by the variable costs.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.