Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's address each part of the question step-by-step:
### Part (a) - Finding the Expected Value for the [tex]$20 Bet on 00, 0, or 1 The expected value is calculated by considering all possible outcomes, their probabilities, and the respective payoffs. 1. Determine probabilities and outcomes: - Probability of winning (betting on 00, 0, or 1): \( \frac{3}{38} \) - Probability of losing (betting on anything else): \( \frac{35}{38} \) 2. Determine payoffs: - Net profit if the bet wins: \( +\$[/tex]60 \)
- Net loss if the bet loses: [tex]\( -\$20 \)[/tex]
3. Calculate the expected value:
The expected value (EV) is a weighted average of all possible outcomes, expressed as:
[tex]\[ \text{EV} = \left(\text{Probability of winning} \times \text{Net profit}\right) + \left(\text{Probability of losing} \times \text{Net loss}\right) \][/tex]
Plug in the respective values:
[tex]\[ \text{EV} = \left(\frac{3}{38} \times 60\right) + \left(\frac{35}{38} \times -20\right) \][/tex]
Simplify this expression:
[tex]\[ \text{EV} = \left(\frac{3 \times 60}{38}\right) + \left(\frac{35 \times -20}{38}\right) \][/tex]
[tex]\[ \text{EV} = \left(\frac{180}{38}\right) + \left(\frac{-700}{38}\right) \][/tex]
[tex]\[ \text{EV} = \frac{180 - 700}{38} \][/tex]
[tex]\[ \text{EV} = \frac{-520}{38} \][/tex]
[tex]\[ \text{EV} \approx -13.684210526315788 \][/tex]
Thus, the expected value for the \[tex]$20 bet on 00, 0, or 1 is approximately \(-\$[/tex]13.68421\).
### Part (b) - Comparing Bets: [tex]$20 Bet on Number 11 vs. $[/tex]20 Bet on 00, 0, or 1
You are given that the expected value of the \[tex]$20 bet on the number 11 is \(-\$[/tex]1.05\).
1. Expected value for the bet on 00, 0, or 1: [tex]\( -\$13.68421 \)[/tex]
2. Expected value for the bet on number 11: [tex]\( -\$1.05 \)[/tex]
### Conclusion
Compare the expected values:
- Expected value for betting on 00, 0, or 1: [tex]\( -\$13.68421 \)[/tex]
- Expected value for betting on number 11: [tex]\( -\$1.05 \)[/tex]
Since [tex]\(-\$1.05\)[/tex] is greater (less negative) than [tex]\(-\$13.68421\)[/tex], the expected loss is smaller when betting on the number 11.
Thus, the \$20 bet on the number 11 is the better bet because it has a higher expected value, meaning a smaller expected loss compared to betting on 00, 0, or 1.
### Part (a) - Finding the Expected Value for the [tex]$20 Bet on 00, 0, or 1 The expected value is calculated by considering all possible outcomes, their probabilities, and the respective payoffs. 1. Determine probabilities and outcomes: - Probability of winning (betting on 00, 0, or 1): \( \frac{3}{38} \) - Probability of losing (betting on anything else): \( \frac{35}{38} \) 2. Determine payoffs: - Net profit if the bet wins: \( +\$[/tex]60 \)
- Net loss if the bet loses: [tex]\( -\$20 \)[/tex]
3. Calculate the expected value:
The expected value (EV) is a weighted average of all possible outcomes, expressed as:
[tex]\[ \text{EV} = \left(\text{Probability of winning} \times \text{Net profit}\right) + \left(\text{Probability of losing} \times \text{Net loss}\right) \][/tex]
Plug in the respective values:
[tex]\[ \text{EV} = \left(\frac{3}{38} \times 60\right) + \left(\frac{35}{38} \times -20\right) \][/tex]
Simplify this expression:
[tex]\[ \text{EV} = \left(\frac{3 \times 60}{38}\right) + \left(\frac{35 \times -20}{38}\right) \][/tex]
[tex]\[ \text{EV} = \left(\frac{180}{38}\right) + \left(\frac{-700}{38}\right) \][/tex]
[tex]\[ \text{EV} = \frac{180 - 700}{38} \][/tex]
[tex]\[ \text{EV} = \frac{-520}{38} \][/tex]
[tex]\[ \text{EV} \approx -13.684210526315788 \][/tex]
Thus, the expected value for the \[tex]$20 bet on 00, 0, or 1 is approximately \(-\$[/tex]13.68421\).
### Part (b) - Comparing Bets: [tex]$20 Bet on Number 11 vs. $[/tex]20 Bet on 00, 0, or 1
You are given that the expected value of the \[tex]$20 bet on the number 11 is \(-\$[/tex]1.05\).
1. Expected value for the bet on 00, 0, or 1: [tex]\( -\$13.68421 \)[/tex]
2. Expected value for the bet on number 11: [tex]\( -\$1.05 \)[/tex]
### Conclusion
Compare the expected values:
- Expected value for betting on 00, 0, or 1: [tex]\( -\$13.68421 \)[/tex]
- Expected value for betting on number 11: [tex]\( -\$1.05 \)[/tex]
Since [tex]\(-\$1.05\)[/tex] is greater (less negative) than [tex]\(-\$13.68421\)[/tex], the expected loss is smaller when betting on the number 11.
Thus, the \$20 bet on the number 11 is the better bet because it has a higher expected value, meaning a smaller expected loss compared to betting on 00, 0, or 1.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.