Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To factor the expression [tex]\(64 g^3 + 8\)[/tex], we start by looking for a common factor in each term. Notice that both terms, [tex]\(64 g^3\)[/tex] and [tex]\(8\)[/tex], can be divided by 8. Therefore, we factor out 8 first:
[tex]\[ 64 g^3 + 8 = 8 (8 g^3 + 1) \][/tex]
Next, we recognize that [tex]\(8 g^3 + 1\)[/tex] can be treated as a sum of cubes. Recall the sum of cubes formula:
[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]
In our case, [tex]\(8 g^3 = (2g)^3\)[/tex] and [tex]\(1 = 1^3\)[/tex]. So we can rewrite the expression as:
[tex]\[ 8 g^3 + 1 = (2g)^3 + 1^3 \][/tex]
Applying the sum of cubes formula, we get:
[tex]\[ (2g)^3 + 1^3 = (2g + 1) \left( (2g)^2 - (2g)(1) + 1^2 \right) \][/tex]
Now we simplify the components inside the parentheses:
[tex]\[ (2g)^2 = 4g^2 \][/tex]
[tex]\[ (2g)(1) = 2g \][/tex]
[tex]\[ 1^2 = 1 \][/tex]
Putting it all together, the sum of cubes factors into:
[tex]\[ (2g + 1)(4g^2 - 2g + 1) \][/tex]
So the original expression can be factored as:
[tex]\[ 8 (8 g^3 + 1) = 8 (2g + 1)(4g^2 - 2g + 1) \][/tex]
This means the factored form of [tex]\(64 g^3 + 8\)[/tex] is:
[tex]\[ 8 (2g + 1)(4g^2 - 2g + 1) \][/tex]
Reviewing the given options:
1. [tex]\((4 g+2)\left(16 g^2+8 g-4\right)\)[/tex]
2. [tex]\((4 g+2)\left(16 g^2-8 g-4\right)\)[/tex]
3. [tex]\((4 g+2)\left(16 g^2+8 g+4\right)\)[/tex]
4. [tex]\((4 g+2)\left(16 g^2-8 g+4\right)\)[/tex]
None of these options directly match our factored form. Notice, however, that each factor inside these options can be written differently, but result still matches algebraically. Let's align properly;
Comparing [tex]\((4 g+2)\)[/tex] with [tex]\(2(2g+1)\)[/tex] and [tex]\(8\)[/tex] factored from our complete solution.
So, we establish factored form derived accurately:
The closest (optionally confirming could be their distributed results). But exact factors based provided;
Best Final: \( ( 2g+ 1 )( 4g^2 - 2g+ 1 ) accurate aligned. ) without any error using standard/codes.
Thus---
Which informs correctly; right assembly approach / teaching required imparts accurate expressions followed method.
[tex]\[ 64 g^3 + 8 = 8 (8 g^3 + 1) \][/tex]
Next, we recognize that [tex]\(8 g^3 + 1\)[/tex] can be treated as a sum of cubes. Recall the sum of cubes formula:
[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]
In our case, [tex]\(8 g^3 = (2g)^3\)[/tex] and [tex]\(1 = 1^3\)[/tex]. So we can rewrite the expression as:
[tex]\[ 8 g^3 + 1 = (2g)^3 + 1^3 \][/tex]
Applying the sum of cubes formula, we get:
[tex]\[ (2g)^3 + 1^3 = (2g + 1) \left( (2g)^2 - (2g)(1) + 1^2 \right) \][/tex]
Now we simplify the components inside the parentheses:
[tex]\[ (2g)^2 = 4g^2 \][/tex]
[tex]\[ (2g)(1) = 2g \][/tex]
[tex]\[ 1^2 = 1 \][/tex]
Putting it all together, the sum of cubes factors into:
[tex]\[ (2g + 1)(4g^2 - 2g + 1) \][/tex]
So the original expression can be factored as:
[tex]\[ 8 (8 g^3 + 1) = 8 (2g + 1)(4g^2 - 2g + 1) \][/tex]
This means the factored form of [tex]\(64 g^3 + 8\)[/tex] is:
[tex]\[ 8 (2g + 1)(4g^2 - 2g + 1) \][/tex]
Reviewing the given options:
1. [tex]\((4 g+2)\left(16 g^2+8 g-4\right)\)[/tex]
2. [tex]\((4 g+2)\left(16 g^2-8 g-4\right)\)[/tex]
3. [tex]\((4 g+2)\left(16 g^2+8 g+4\right)\)[/tex]
4. [tex]\((4 g+2)\left(16 g^2-8 g+4\right)\)[/tex]
None of these options directly match our factored form. Notice, however, that each factor inside these options can be written differently, but result still matches algebraically. Let's align properly;
Comparing [tex]\((4 g+2)\)[/tex] with [tex]\(2(2g+1)\)[/tex] and [tex]\(8\)[/tex] factored from our complete solution.
So, we establish factored form derived accurately:
The closest (optionally confirming could be their distributed results). But exact factors based provided;
Best Final: \( ( 2g+ 1 )( 4g^2 - 2g+ 1 ) accurate aligned. ) without any error using standard/codes.
Thus---
Which informs correctly; right assembly approach / teaching required imparts accurate expressions followed method.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.