Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the [tex]$x$[/tex] and [tex]$y$[/tex] intercepts of the equation [tex]$-2x + 7y = -56$[/tex], we can follow these steps:
### Finding the [tex]\(x\)[/tex] Intercept
1. Set [tex]\(y = 0\)[/tex] in the equation: The [tex]$x$[/tex] intercept is found where the line crosses the [tex]$x$[/tex]-axis. At this point, [tex]$y = 0$[/tex].
Hence, in the equation:
[tex]\[ -2x + 7(0) = -56 \][/tex]
2. Simplify the equation:
[tex]\[ -2x = -56 \][/tex]
3. Solve for [tex]\(x\)[/tex]: Divide both sides by [tex]$-2$[/tex]:
[tex]\[ x = \frac{-56}{-2} \][/tex]
[tex]\[ x = 28 \][/tex]
Therefore, the [tex]$x$[/tex] intercept is [tex]\((28, 0)\)[/tex].
### Finding the [tex]\(y\)[/tex] Intercept
1. Set [tex]\(x = 0\)[/tex] in the equation: The [tex]$y$[/tex] intercept is found where the line crosses the [tex]$y$[/tex]-axis. At this point, [tex]$x = 0$[/tex].
Hence, in the equation:
[tex]\[ -2(0) + 7y = -56 \][/tex]
2. Simplify the equation:
[tex]\[ 7y = -56 \][/tex]
3. Solve for [tex]\(y\)[/tex]: Divide both sides by 7:
[tex]\[ y = \frac{-56}{7} \][/tex]
[tex]\[ y = -8 \][/tex]
Therefore, the [tex]$y$[/tex] intercept is [tex]\((0, -8)\)[/tex].
### Summary
The intercepts are:
- [tex]\(x\)[/tex] intercept = [tex]\((28, 0)\)[/tex]
- [tex]\(y\)[/tex] intercept = [tex]\((0, -8)\)[/tex]
These points represent where the line crosses the [tex]$x$[/tex]-axis and [tex]$y$[/tex]-axis, respectively.
### Finding the [tex]\(x\)[/tex] Intercept
1. Set [tex]\(y = 0\)[/tex] in the equation: The [tex]$x$[/tex] intercept is found where the line crosses the [tex]$x$[/tex]-axis. At this point, [tex]$y = 0$[/tex].
Hence, in the equation:
[tex]\[ -2x + 7(0) = -56 \][/tex]
2. Simplify the equation:
[tex]\[ -2x = -56 \][/tex]
3. Solve for [tex]\(x\)[/tex]: Divide both sides by [tex]$-2$[/tex]:
[tex]\[ x = \frac{-56}{-2} \][/tex]
[tex]\[ x = 28 \][/tex]
Therefore, the [tex]$x$[/tex] intercept is [tex]\((28, 0)\)[/tex].
### Finding the [tex]\(y\)[/tex] Intercept
1. Set [tex]\(x = 0\)[/tex] in the equation: The [tex]$y$[/tex] intercept is found where the line crosses the [tex]$y$[/tex]-axis. At this point, [tex]$x = 0$[/tex].
Hence, in the equation:
[tex]\[ -2(0) + 7y = -56 \][/tex]
2. Simplify the equation:
[tex]\[ 7y = -56 \][/tex]
3. Solve for [tex]\(y\)[/tex]: Divide both sides by 7:
[tex]\[ y = \frac{-56}{7} \][/tex]
[tex]\[ y = -8 \][/tex]
Therefore, the [tex]$y$[/tex] intercept is [tex]\((0, -8)\)[/tex].
### Summary
The intercepts are:
- [tex]\(x\)[/tex] intercept = [tex]\((28, 0)\)[/tex]
- [tex]\(y\)[/tex] intercept = [tex]\((0, -8)\)[/tex]
These points represent where the line crosses the [tex]$x$[/tex]-axis and [tex]$y$[/tex]-axis, respectively.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.