Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

List the solutions of the equation given that [tex][tex]$0 \leq t \ \textless \ 4\pi$[/tex][/tex]:

[tex]\[ -\frac{3}{2} + \sin t = -2 \][/tex]

Provide your answer below:

[tex]\[ t = \square \][/tex]


Sagot :

To solve the equation [tex]\( -\frac{3}{2} + \sin t = -2 \)[/tex] within the interval [tex]\( 0 \leq t < 4\pi \)[/tex], follow these steps:

1. Isolate [tex]\(\sin t\)[/tex]: Start by isolating the sine function
[tex]\[ -\frac{3}{2} + \sin t = -2. \][/tex]
Add [tex]\(\frac{3}{2}\)[/tex] to both sides to isolate [tex]\(\sin t\)[/tex]:
[tex]\[ \sin t = -2 + \frac{3}{2}. \][/tex]

2. Simplify the equation: Simplify the right-hand side:
[tex]\[ \sin t = -0.5. \][/tex]

3. Find the values of [tex]\(t\)[/tex]: We need to find [tex]\(t\)[/tex] such that [tex]\(\sin t = -0.5\)[/tex] within the interval [tex]\( 0 \leq t < 4\pi \)[/tex].

- In the interval [tex]\( 0 \leq t < 2\pi \)[/tex], [tex]\(\sin t = -0.5\)[/tex] at two points:
[tex]\[ t_1 = \frac{7\pi}{6} \quad \text{and} \quad t_2 = \frac{11\pi}{6}. \][/tex]

- Since the sine function is periodic with a period of [tex]\(2\pi\)[/tex], we can find additional solutions by adding multiples of [tex]\(2\pi\)[/tex]. We are interested in finding [tex]\(t\)[/tex] within the interval [tex]\(0 \leq t < 4\pi\)[/tex].

Add [tex]\(2\pi\)[/tex] to each of these solutions:
[tex]\[ t_3 = \frac{7\pi}{6} + 2\pi = \frac{7\pi}{6} + \frac{12\pi}{6} = \frac{19\pi}{6}, \][/tex]
[tex]\[ t_4 = \frac{11\pi}{6} + 2\pi = \frac{11\pi}{6} + \frac{12\pi}{6} = \frac{23\pi}{6}. \][/tex]

4. List the solutions: Collect all the solutions that fall within the interval [tex]\( 0 \leq t < 4\pi \)[/tex]:
[tex]\[ t = \left\{ \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{19\pi}{6}, \frac{23\pi}{6} \right\}. \][/tex]

In decimal form, these values are approximately:
[tex]\[ t = \left\{ 3.67, 5.76, 9.95, 12.04 \right\}. \][/tex]

Therefore, the solutions to the equation [tex]\( -\frac{3}{2} + \sin t = -2 \)[/tex] within the interval [tex]\( 0 \leq t < 4\pi \)[/tex] are:

[tex]\[ t = \boxed{ \left\{ 3.67, 5.76, 9.95, 12.04 \right\} } \][/tex]